230 research outputs found

    ELECTRON DEVICE NONLINEAR MODELLING FOR MICROWAVE CIRCUIT DESIGN

    Get PDF
    The electron device modelling is a research topic of great relevance, since the performances required to devices are continuously increasing in terms of frequency, power and linearity: new technologies are affirming themselves, bringing new challenges for the modelling community. In addition, the use of monolithic microwave integrated circuits (MMIC) is also increasing, making necessary the availability, in the circuit design phase, of models which are computationally efficient and at the same more and more accurate. The importance of modelling is even more evident by thinking at the wide area covered by microwave systems: terrestrial broadband, satellite communications, automotive applications, but also military industry, emergency prevention systems or medical instrumentations. This work contains a review of the empirical modelling approach, providing the description of some well-known equivalent-circuit and black-box models. In addition, an original modelling approach is described in details, together with the various possible applications: modelling of nonquasi-static phenomena as well as of low-frequency dispersive effects. A wide experimental validation is provided, for GaAs- and GaN-based devices. Other modelling issues are faced up, like the extraction of accurate models for Cold-FET or the more convenient choice of the data-interpolator in table-based models. Finally, the device degradation is also treated: a new measurement setup will be presented, aimed to the characterization of the device breakdown walkout under actual operating conditions for power amplifiers

    Design of Integrated Circuits Approaching Terahertz Frequencies

    Get PDF

    Automatic Extraction of Measurement-Based Large-Signal FET Models by Nonlinear Function Sampling.

    Get PDF
    A new method is proposed for the accurate experimental characterization and fully automated extraction of compact nonlinear models for Field-Effect Transistors (FETs). The approach, which leads to a charge-conservative description, is based on a single large-signal measurement under a two-tone sinusoidal wave excitation. A suitable choice of tone frequencies, amplitudes, and bias allows to adequately characterize the transistor over the whole safe operating region. The voltage controlled nonlinear functions describing the two-port FET model can be computed over an arbitrarily dense voltage domain by solving an overdetermined system of linear equations. These equations are expressed in terms of a new Nonlinear Function Sampling operator based on a bi-periodic Fourier series description of the acquired frequency spectra. The experimental validation is carried out on a 0.25-μm Gallium Nitride (GaN) on Silicon Carbide (SiC) High-Electron Mobility Transistor (HEMT) under continuous-wave (CW) and two-tone excitation (intermodulation distortion test).This project was partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades in the frame of ‘Salvador de Madariaga’ Program PRX18/00108

    ADVANCED MODELING APPROACHES FOR MICROWAVE FET DEVICES & SUB-SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modeling of AlGaN/GaN High Electron Mobility Transistor for Sensors and High-Temperature Circuit Applications

    Get PDF
    With the most advanced and mature technology for electronic devices, silicon (Si) based devices can be processed with practically no material defects. However, Si technology has difficulty meeting the demand for some high-power, high-speed, and high-temperature applications due to limitations in its intrinsic properties. Wide bandgap semiconductors have greater prospects compared to Si based devices. The wide band gap material system shows higher breakdown voltage, lower leakage, higher saturation velocity, larger thermal conductivity and better thermal stability suitable for high-power, high-speed, and high-temperature operations of the devices. In recent years, GaN based devices have drawn much research attention due to their superior performances compared to other wide bandgap semiconductor (SiC) devices. Specifically, implementation of AlGaN/GaN high electron mobility transistor (HEMT) based power amplifiers have become very promising for applications in base stations or radar. With the increase in device power, channel temperature rises. This introduces high-temperature effects in the device characteristics. In addition, high-power, high-frequency and high-temperature operation of AlGaN/GaN HEMT is required for telemetry in extreme environment. AlGaN/GaN HEMT also shows great potential as chemically selective field-effect transistor (CHEMFET). Due to simpler imprint technique and amplification advantages CHEMFET based detection and characterization of bio-molecules has become very popular. AlGaN/GaN HEMT has high mobility two-dimensional electron gas (2 DEG) at the hetero-interface closer to the surface and hence it shows high sensitivity to any surface charge conditions. The primary objective of this research is to develop a temperature dependent physics based model of AlGaN/GaN HEMT to predict the performance for high-power and high- speed applications at varying temperatures. The physics based model has also been applied to predict the characteristics of AlGaN/GaN HEMT based CHEMFET for the characterization of bio-molecular solar batteries - Photosystem I reaction centers. Using the CHEMFET model, the number of reaction centers with effective orientation on the gate surface of the HEMT can be estimated

    Theory Based on Device Current Clipping to Explain and Predict Performance Including Distortion of Power Amplifiers for Wireless Communication Systems

    Get PDF
    Power amplifiers are critical components in wireless communication systems that need to have high efficiency, in order to conserve battery life and minimise heat generation, and at the same time low distortion, in order to prevent increase of bit error rate due to constellation errors and adjacent channel interference. This thesis is aimed at meeting a need for greater understanding of distortion generated by power amplifiers of any technology, in order to help designers manage better the trade-off between obtaining high efficiency and low distortion. The theory proposed in this thesis to explain and predict the performance of power amplifiers, including distortion, is based on analysis of clipping of the power amplifier device current, and it is a major extension of previous clipping analyses, that introduces many key definitions and concepts. Distortion and other power amplifier metrics are determined in the form of 3-D surfaces that are plotted against PA class, which is determined by bias voltage, and input signal power level. It is shown that the surface of distortion exhibits very high levels due to clipping in the region where efficiency is high. This area of high distortion is intersected by a valley that is ‘L’-shaped. The 'L'-shaped valley is subject to a rotation that depends on the softness of the cut-off of the power amplifier device transfer characteristic. The distortion surface with rotated 'L'-shaped valley leads to predicted curves for distortion versus input signal power that match published measured curves for power amplifiers even using very simple device models. The distortion versus input signal power curves have types that are independent of technology. In class C, there is a single deep null. In the class AB range, that is divided into three sub-ranges, there may be two deep nulls (sub-range AB(B)), a ledge (sub-range AB(A)) or a shallow null with varying depth (sub-range AB(AB))

    Advanced modeling of nanoscale devices for analog applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Physics-Based Compact Model for p-GaN/AlGaN/GaN. Application: Understanding of Degradation After Gamma-Ray Irradiation

    Get PDF
    This thesis explores the nature of gallium nitride devices from the point of view of compact modeling paying particular attention to power electronic application. To model the behavior of such devices, the physics of the typical GaN HEMT is studied by solving the Schrodinger's and Poisson's equations. The Physical-Based model is used to help our understanding of the effect of gamma irradiation on GaN based devices

    Contributing to Second Harmonic Manipulated Continuum Mode Power Amplifiers and On-Chip Flux Concentrators

    Get PDF
    The current cellular network consumes a staggering 100 TWh of energy every year. In the coming years, millions of devices will be added to the existing network to realize the Internet of Things (IoT), further increasing its power consumption. An RF power amplifier typically consumes a large proportion of the DC power in a wireless transceiver, improving its efficiency has the largest impact on the overall system. Additionally, amplifiers need to demonstrate high linearity and bandwidth to adhere to constraints imposed by wireless standards and to reduce the number of amplifiers required as an amplifier with a broader bandwidth can potentially replace several narrowband amplifiers. A typical approach to improve efficiency is to present an appropriate load at the harmonics generated by the transistor. Recently proposed continuous modes based on harmonic manipulation, such as class B/J continuum, continuous class F (CCF) and continuous class F-1 (CCF-1), have shown the capability of achieving counteracting requirements viz., high efficiency, high linearity, and broad bandwidth (with a fractional bandwidth greater than 30%). In these classes of amplifiers, the second harmonic is manipulated by placing a reactive second harmonic load and the reactive component of the fundamental load is adjusted while keeping a fixed resistive component of the fundamental load. The first contribution of this work is to investigate the reason for amplifiers designed in classes B/J continuum and CCF to achieve high efficiency at back-off and 1dB compression. In this thesis, we demonstrate that the variation of the phase of the current through the non-linear intrinsic capacitances due to the variation of the phase in the continuum of drain voltage waveforms in Class B/J/J* continuum leads to either a reduction or enhancement of intrinsic drain current. Consequently, a subset of voltage waveforms of the class B/J/J* continuum can be used to design amplifiers with higher P1dB, and efficiency at P1dB than in Class B. A simple choice of this subset is demonstrated with a 2.6GHz Class B/J/J* amplifier, achieving a P1dB of 38.1dBm and PAE at P1dB of 54.7%, the highest output power and efficiency at P1dB amongst narrowband linear amplifiers using the CGH40010 reported to date, at a comparable peak PAE of 72%. Secondly, we propose a new formulation for high-efficiency modes of power amplifiers in which both the in-phase and out-of-phase components of the second harmonic of the current are varied, in addition to the second harmonic component of the voltage. A reduction of the in-phase component of the second harmonic of current allows reduction of the phase difference between the voltage and current waveforms, thereby increasing the power factor and efficiency. Our proposed waveforms offer a continuous design space between class B/J continuum and continuous F-1 achieving an efficiency of up to 91% in theory, but over a wider set of load impedances than continuous class F-1. These waveforms require a short at third and higher harmonic impedances, which are easier to achieve at a higher frequency. The load impedances at the second harmonic are reactive and can be of any value between -j∞ and j∞, easing the amplifier design. A trade-off between linearity and efficiency exists in the newly proposed broadband design space, but we demonstrate inherent broadband capability. The fabricated narrowband amplifier using a GaN HEMT CGH40010F demonstrates 75.9% PAE and 42.2 dBm output power at 2.6 GHz, demonstrating a comparable frequency weighted efficiency for this device to that reported in the literature. IoT devices may be deployed in critical applications such as radar or 5G transceivers of an autonomous vehicle and hence need to operate free of failure. Monitoring the drain current of the RF GaN MMIC would allow to optimize the device performance and protect it from surges in its supply current. Galvanic current sensors rely on the magnetic field generated by the current as a non-invasive method of current sensing. In this thesis, our third major contribution is a planar on-chip magnetic flux concentrator, is enhance the magnetic field at the current sensor, thereby improving the current detection capability of a current sensor. Our layout utilizes a discontinuity in a magnetic via, resulting in penetration of the magnetic field into the substrate. The proposed concentrator has a magnetic gain x1.8 in comparison to air. The permeability of the magnetic core required is 500, much lower than that reported in off-chip concentrators, resulting in a significant easing of the specifications of the material properties of the core. Additionally, we explore a novel three-dimensional spiral-shaped magnetic flux concentrator. It is predicted via simulations that this geometry becomes a necessity to enhance the magnetic field for increased form factor as the magnetic field from a single planar concentrator deteriorates as its size increases
    corecore