9,287 research outputs found

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Non-equilibrium phase transitions in biomolecular signal transduction

    Full text link
    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework

    Diffusion approximation for self-similarity of stochastic advection in Burgers' equation

    Full text link
    Self-similarity of Burgers' equation with some stochastic advection is studied. In self-similar variables a stationary solution is constructed which establishes the existence of a stochastically self-similar solution for the stochastic Burgers' equation. The analysis assumes that the stochastic coefficient of advection is transformed to a white noise in the self-similar variables. Furthermore, by a diffusion approximation, the long time convergence to the self-similar solution is proved in the sense of distribution.Comment: 37 pages, Comm. Math. Phys., to appear, 201

    Steering the distribution of agents in mean-field and cooperative games

    Full text link
    The purpose of this work is to pose and solve the problem to guide a collection of weakly interacting dynamical systems (agents, particles, etc.) to a specified terminal distribution. The framework is that of mean-field and of cooperative games. A terminal cost is used to accomplish the task; we establish that the map between terminal costs and terminal probability distributions is onto. Our approach relies on and extends the theory of optimal mass transport and its generalizations.Comment: 20 pages, 8 figure

    Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching

    Get PDF
    A more general class of stochastic nonlinear systems with irreducible homogenous Markovian switching are considered in this paper. As preliminaries, the stability criteria and the existence theorem of strong solutions are first presented by using the inequality of mathematic expectation of a Lyapunov function. The state-feedback controller is designed by regarding Markovian switching as constant such that the closed-loop system has a unique solution, and the equilibrium is asymptotically stable in probability in the large. The output-feedback controller is designed based on a quadratic-plus-quartic-form Lyapunov function such that the closed-loop system has a unique solution with the equilibrium being asymptotically stable in probability in the large in the unbiased case and has a unique bounded-in-probability solution in the biased case
    corecore