3,141 research outputs found

    Dissipative Chaos in Semiconductor Superlattices

    Full text link
    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure

    Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices

    Full text link
    A Wigner-Poisson kinetic equation describing charge transport in doped semiconductor superlattices is proposed. Electrons are supposed to occupy the lowest miniband, exchange of lateral momentum is ignored and the electron-electron interaction is treated in the Hartree approximation. There are elastic collisions with impurities and inelastic collisions with phonons, imperfections, etc. The latter are described by a modified BGK (Bhatnagar-Gross-Krook) collision model that allows for energy dissipation while yielding charge continuity. In the hyperbolic limit, nonlocal drift-diffusion equations are derived systematically from the kinetic Wigner-Poisson-BGK system by means of the Chapman-Enskog method. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical solutions of the latter equations show self-sustained oscillations of the current through a voltage biased superlattice, in agreement with known experiments.Comment: 20 pages, 1 figure, published as M3AS 15, 1253 (2005) with correction

    Direct current generation due to harmonic mixing: From bulk semiconductors to semiconductor superlattices

    Get PDF
    We discuss an effect of dc current and dc voltage (stopping bias) generation in a semiconductor superlattice subjected by an ac electric field and its phase-shifted n-th harmonic. In the low field limit, we find a simple dependence of dc voltage on a strength, frequency, and relative phase of mixing harmonics for an arbitrary even value of n. We show that the generated dc voltage has a maximum when a frequency of ac field is of the order of a scattering constant of electrons in a superlattice. This means that for typical semiconductor superlattices at room temperature operating in the THz frequency domain the effect is really observable. We also made a comparison of a recent paper describing an effect of a directed current generation in a semiconductor superlattice subjected by ac field and its second harmonic (n=2) [K.Seeger, Appl.Phys.Lett. 76(2000)82] with our earlier findings describing the same effect [K.Alekseev et al., Europhys. Lett. 47(1999)595; cond-mat/9903092 ]. For the mixing of an ac field and its n-th harmonic with n>=4, we found that additionally to the phase-shift controlling of the dc current, there is a frequency control. This frequency controlling of the dc current direction is absent in the case of n=2. The found effect is that, both the dc current suppression and the dc current reversals exist for some particular values of ac field frequency. For typical semiconductor superlattices such an interesting behavior of the dc current should be observable also in the THz domain. Finally, we briefly review the history of the problem of the dc current generation at mixing of harmonics in semiconductors and semiconductor microstructures.Comment: 9 pages, 1 figure, RevTEX, EPS

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    Nonequilibrium free energy, H theorem and self-sustained oscillations for Boltzmann-BGK descriptions of semiconductor superlattices

    Full text link
    Semiconductor superlattices (SL) may be described by a Boltzmann-Poisson kinetic equation with a Bhatnagar-Gross-Krook (BGK) collision term which preserves charge, but not momentum or energy. Under appropriate boundary and voltage bias conditions, these equations exhibit time-periodic oscillations of the current caused by repeated nucleation and motion of charge dipole waves. Despite this clear nonequilibrium behavior, if we `close' the system by attaching insulated contacts to the superlattice and keeping its voltage bias to zero volts, we can prove the H theorem, namely that a free energy Φ(t)\Phi(t) of the kinetic equations is a Lyapunov functional (Φ0\Phi\geq 0, dΦ/dt0d\Phi/dt\leq 0). Numerical simulations confirm that the free energy decays to its equilibrium value for a closed SL, whereas for an `open' SL under appropriate dc voltage bias and contact conductivity Φ(t)\Phi(t) oscillates in time with the same frequency as the current self-sustained oscillations.Comment: 15 pages, 3 figures, minor revision of latex fil
    corecore