57,149 research outputs found

    Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser

    Get PDF
    Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks. © 2013 Optical Society of America

    Recurrence plot statistics and the effect of embedding

    Full text link
    Recurrence plots provide a graphical representation of the recurrent patterns in a timeseries, the quantification of which is a relatively new field. Here we derive analytical expressions which relate the values of key statistics, notably determinism and entropy of line length distribution, to the correlation sum as a function of embedding dimension. These expressions are obtained by deriving the transformation which generates an embedded recurrence plot from an unembedded plot. A single unembedded recurrence plot thus provides the statistics of all possible embedded recurrence plots. If the correlation sum scales exponentially with embedding dimension, we show that these statistics are determined entirely by the exponent of the exponential. This explains the results of Iwanski and Bradley (Chaos 8 [1998] 861-871) who found that certain recurrence plot statistics are apparently invariant to embedding dimension for certain low-dimensional systems. We also examine the relationship between the mutual information content of two timeseries and the common recurrent structure seen in their recurrence plots. This allows time-localized contributions to mutual information to be visualized. This technique is demonstrated using geomagnetic index data; we show that the AU and AL geomagnetic indices share half their information, and find the timescale on which mutual features appear

    Scaling of NonOhmic Conduction in Strongly Correlated Systems

    Full text link
    A new scaling formalism is used to analyze nonlinear I-V data in the vicinity of metal-insulator transitions (MIT) in five manganite systems. An exponent, called the nonlinearity exponent, and an onset field for nonlinearity, both characteristic of the system under study, are obtained from the analysis. The onset field is found to have an anomalously low value corroborating the theoretically predicted electronically soft phases. The scaling functions above and below the MIT of a polycrystalline sample are found to be the same but with different exponents which are attributed to the distribution of the MIT temperatures. The applicability of the scaling in manganites underlines the universal response of the disordered systems to electric field

    Nonlinear Schroedinger-Poisson Theory for Quantum-Dot Helium

    Full text link
    We use a nonlinear Schroedinger-Poisson equation to describe two interacting electrons with opposite spins confined in a parabolic potential, a quantum dot. We propose an effective form of the Poisson equation taking into account the dimensional mismatch of the two-dimensional electronic system and the three-dimensional electrostatics. The results agree with earlier numerical calculations performed in a large basis of two-body states and provide a simple model for continuous quantum-classical transition with increasing nonlinearity. Specific intriguing properties due to eigenstate non-orthogonality are emphasized.Comment: RevTeX, 8 pages with 6 included eps figure

    Dissipative vortex solitons in 2D-lattices

    Get PDF
    We report the existence of stable symmetric vortex-type solutions for two-dimensional nonlinear discrete dissipative systems governed by a cubic-quintic complex Ginzburg-Landau equation. We construct a whole family of vortex solitons with a topological charge S = 1. Surprisingly, the dynamical evolution of unstable solutions of this family does not alter significantly their profile, instead their phase distribution completely changes. They transform into two-charges swirl-vortex solitons. We dynamically excite this novel structure showing its experimental feasibility.Comment: 4 pages, 20 figure
    corecore