2,736 research outputs found

    Expectation Propagation for Nonlinear Inverse Problems -- with an Application to Electrical Impedance Tomography

    Full text link
    In this paper, we study a fast approximate inference method based on expectation propagation for exploring the posterior probability distribution arising from the Bayesian formulation of nonlinear inverse problems. It is capable of efficiently delivering reliable estimates of the posterior mean and covariance, thereby providing an inverse solution together with quantified uncertainties. Some theoretical properties of the iterative algorithm are discussed, and the efficient implementation for an important class of problems of projection type is described. The method is illustrated with one typical nonlinear inverse problem, electrical impedance tomography with complete electrode model, under sparsity constraints. Numerical results for real experimental data are presented, and compared with that by Markov chain Monte Carlo. The results indicate that the method is accurate and computationally very efficient.Comment: Journal of Computational Physics, to appea

    Approximation of full-boundary data from partial-boundary electrode measurements

    Get PDF
    Measurements on a subset of the boundary are common in electrical impedance tomography, especially any electrode model can be interpreted as a partial boundary problem. The information obtained is different to full-boundary measurements as modeled by the ideal continuum model. In this study we discuss an approach to approximate full-boundary data from partial-boundary measurements that is based on the knowledge of the involved projections. The approximate full-boundary data can then be obtained as the solution of a suitable optimization problem on the coefficients of the Neumann-to-Dirichlet map. By this procedure we are able to improve the reconstruction quality of continuum model based algorithms, in particular we present the effectiveness with a D-bar method. Reconstructions are presented for noisy simulated and real measurement data

    B-spline based sharp feature preserving shape reconstruction approach for electrical impedance tomography

    Get PDF
    This paper presents a B-spline based shape reconstruction approach for electrical impedance tomography (EIT). In the proposed approach, the conductivity distribution to be reconstructed is assumed to be piecewise constant. The geometry of the inclusions is parameterized using B-spline curves, and the EIT forward solver is modified as a set of control points representing the inclusions’ boundary to the data on the domain boundary. The low order representation decreases the computational demand and reduces the ill-posedness of the EIT reconstruction problem. The performance of the proposed B-spline based approach is tested with simulations which demonstrate the most popular biomedical application of EIT: lung imaging. The approach is experimentally validated using water tank data. In addition, robustness studies of the proposed approach considering varying initial guesses, inaccurately known contact impedances, differing numbers of control points, and degree of B-spline are performed. The simulation and experimental results show that the B-spline based approach offers improvements in image quality in comparison to the traditional Fourier series based reconstruction approach, as measured by quantitative metrics such as relative size coverage ratio and relative contrast. Inasmuch, the proposed approach is demonstrated to offer clear improvement in the ability to preserve the sharp properties of the inclusions to be imaged

    Nonstationary shape estimation in electrical impedance tomography using a parametric level set-based extended Kalman filter approach

    Get PDF
    This paper presents a parametric level set based reconstruction method for non-stationary applications using electrical impedance tomography (EIT). Owing to relatively low signal to noise ratios in EIT measurement systems and the diffusive nature of EIT, reconstructed images often suffer from low spatial resolution. In addressing these challenges, we propose a computationally efficient shape-estimation approach where the conductivity distribution to be reconstructed is assumed to be piecewise constant, and the region boundaries are assumed to be non-stationary in the sense that the characteristics of region boundaries change during measurement time. The EIT inverse problem is formulated as a state estimation problem in which the system is modeled with a state equation and an observation equation. Given the temporal evolution model of the boundaries and observation model, the objective is to estimate a sequence of states for the nonstationary region boundaries. The implementation of the approach is based on the finite element method and a parametric representation of the region boundaries using level set functions. The performance of the proposed approach is evaluated with simulated examples of thorax imaging, using noisy synthetic data and experimental data from a laboratory setting. In addition, robustness studies of the approach w.r.t the modeling errors caused by inaccurately known boundary shape, non-homogeneous background and varying conductivity values of the targets are carried out and it is found that the proposed approach tolerates such kind of modeling errors, leading to good reconstructions in non-stationary situations

    Non-linear difference imaging approach to electrical impedance tomography

    Get PDF
    • …
    corecore