182 research outputs found

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Micro-electro-opto-fluidic systems for biomedical drug screening and electromagnetic filtering and cloaking applications

    Get PDF
    Microfluidic is a multidisciplinary field that deals with the flow of liquid inside micro-meter size channels. In order to be considered as microfluidics, at least one dimension of the channel should be in the range of one micrometer or sub-millimeter. Microfluidic technology includes designing, manufacturing, formulating devices and processing the liquid. As numerous bio-science and engineering techniques have utilized microfluidics and highly integrated with this remarkable technology, the microfluidic platform technology has extended to several sub-techs: micro-scale analysis, soft-lithography fabrication, polymer science and processing, on-chip sensing and micro-scale fluid manipulation. Those sub-techs have been developed rapidly along with the booming microfluidics. The advance of those techniques has promoted microfluidic system diverse and widespread applications. Some examples that employ this technology include on-chip drug screening, micro-scale analysis, flexible electronics, biochemical assays. Many engineering field, such as optics, electronics, chemicals and electromagnetics, have been integrated with the microfluidic system to form a completed system for sensing, analyzing or realizing some specific applications. Through the fusion of those technologies with microfluidics, many emerging technologies are well initiated, such as optofluidics and electrofluidics. Despite of rapid advancement of each parent technology field, those intersected technologies are still in their infancy and many technological elements and even some fundamental concepts are just now being developed. Thus, it provides great opportunity to explore more about those emerging technologies. Some particular areas that mainly interest researchers including cost deduction, effective fabrication, highly integration, portability and applicability. Due to the wide and diversity nature of the microfluidic technology and numerous combinations from the integration with other fields, it is very difficult to choose a single aspect or particular subject to research. Hence, we would like to focus on the application orientated microfluidic techniques that integrated with other engineering areas, in particular optics and electronics. Correspondingly, I will present four microfluidic platforms that integrated with optics, electronics for different application purpose. First of all, fiber-optics was integrated into a microfluidic device to detect muscular force generation of microscopic nematodes. The integrated opto-fluidic device is capable of measuring the muscular force of nematode worms normal to the translational movement direction with high sensitivity, high data reliability, and simple device structure. The ability to quantify the muscular forces of small nematode worms will provide a new approach for screening mutants at single animal resolution. Secondly, electronic grids were integrated into a microfluidic chip to realize on-chip tracking of nematode locomotion. The micro-electro-fluidic approach is capable of real-time lens-less and image-sensor-less monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. Thirdly, electromagnetic spit ring resonator (SRR) structure was adopted as microfluidic channel filled with liquid metal to fabricate a tunable microfluidic microwave electronics called meta-atom. The presented meta-atom is capable of tuning its electromagnetic (EM) response characteristics over a broad frequency range via simple mechanical stretching. The meta-atom in this study presents a simple but effective building block for realizing mechanically tunable metamaterials. Finally, based on the meta-atom we previously developed, an array of electromagnetic SRR shaped microfluidic channels filled with liquid metal to form a flexible metamaterial-based microwave electronic “skin” or meta-skin. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. The microfluidic platform will find great applications when it integrates with other technologies. The development of such integration will greatly intersect different research areas and benefit all of the intersected technologies and fields, thus broadening the future applications

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Label-Free Sensing

    Get PDF

    Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip

    Get PDF
    This is the final version. Available on open access from De Gruyter via the DOI in this recordQuantum-enhanced sensing and metrology pave the way for promising routes to fulfil the present day fundamental and technological demands for integrated chips which surpass the classical functional and measurement limits. The most precise measurements of optical properties such as phase or intensity require quantum optical measurement schemes. These non-classical measurements exploit phenomena such as entanglement and squeezing of optical probe states. They are also subject to lower detection limits as compared to classical photodetection schemes. Biosensing with non-classical light sources of entangled photons or squeezed light holds the key for realizing quantum optical bioscience laboratories which could be integrated on chip. Single-molecule sensing with such non-classical sources of light would be a forerunner to attaining the smallest uncertainty and the highest information per photon number. This demands an integrated non-classical sensing approach which would combine the subtle non-deterministic measurement techniques of quantum optics with the device-level integration capabilities attained through nanophotonics as well as nanoplasmonics. In this back drop, we review the underlining principles in quantum sensing, the quantum optical probes and protocols as well as state-of-the-art building blocks in quantum optical sensing. We further explore the recent developments in quantum photonic/plasmonic sensing and imaging together with the potential of combining them with burgeoning field of coupled cavity integrated optoplasmonic biosensing platforms.Engineering and Physical Sciences Research Council (EPSRC)Royal Societ

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    Microfluidics for Molecular Measurements and Quantitative Distributable Diagnostics

    Get PDF
    A major challenge in global health care is a lack of portable and affordable quantitative diagnostic devices. This is because classic quantification of biomolecules is typically performed using kinetic assays that require strict control only found in controlled laboratory environments. By using the power of microfluidics, quantitative assays can be performed robustly in a "digital" format that is decoupled from precise kinetics through highly parallelized qualitative reactions. The benefits of performing quantitative assays in a digital format extend beyond just assay robustness to reduction of instrumental complexity, increase in quantitative precision, and an increase in the amount of information that can be gained from a single experiment. These microfluidic architectures, however, are not limited to usage in scenarios of quantification of biomolecules. These architectures can also potentially be extended to answering complex biological questions in single cells, such as determining the 3-dimensional organization of nuclear DNA and RNA

    Optical Printing of Multiscale Hydrogel Structures

    Get PDF
    Hydrogel has been a promising candidate to recapitulate the chemical, physical and mechanical properties of natural extracellular matrix (ECM), and they have been widely used for tissue engineering, lab on a chip and biophotonics applications. A range of optical fabrication technologies such as photolithography, digital projection stereolithography and laser direct writing have been used to shape hydrogels into structurally complex functional devices and constructs. However, it is still greatly challenging for researchers to design and fabricate multiscale hydrogel structures using a single fabrication technology. To address this challenge, the goal of this work is the design and develop novel multimode optical 3D printing technology capable of printing hydrogels with multiscale features ranging from centimeter to micrometer sizes and in the process transforming simple hydrogels into functional devices for many biomedical applications. Chapter 2 presents a new multimode optical printing technology that synergistically combined large-scale additive manufacturing with small-scale additive/subtractive manufacturing. This multiscale fabrication capability was used to (i) align cells using laser induced densification in Chapter 3, (ii) develop diffractive optics based on changes in refractive indices in Chapter 4, (iii) print diffractive optical elements in Chapter 5, and (iv) digitally print complex microfluidic devices and other 3D constructs in Chapter 6. Overall, this work open doors to a new world of fabrication where multiscale functional hydrogel structures are possible for a range biomedical application
    • …
    corecore