6,942 research outputs found

    Nonlinear Bayesian Estimation with Convex Sets of Probability Densities

    Get PDF
    This paper presents a theoretical framework for Bayesian estimation in the case of imprecisely known probability density functions. The lack of knowledge about the true density functions is represented by sets of densities. A formal Bayesian estimator for these sets is introduced, which is intractable for infinite sets. To obtain a tractable filter, properties of convex sets in form of convex polytopes of densities are investigated. It is shown that pathwise connected sets and their convex hulls describe the same ignorance. Thus, an exact algorithm is derived, which only needs to process the hull, delivering tractable results in the case of a proper parametrization. Since the estimator delivers a convex hull of densities as output, the theoretical grounds are laid for deriving efficient Bayesian estimators for sets of densities. The derived filter is illustrated by means of an example

    Multiscale Dictionary Learning for Estimating Conditional Distributions

    Full text link
    Nonparametric estimation of the conditional distribution of a response given high-dimensional features is a challenging problem. It is important to allow not only the mean but also the variance and shape of the response density to change flexibly with features, which are massive-dimensional. We propose a multiscale dictionary learning model, which expresses the conditional response density as a convex combination of dictionary densities, with the densities used and their weights dependent on the path through a tree decomposition of the feature space. A fast graph partitioning algorithm is applied to obtain the tree decomposition, with Bayesian methods then used to adaptively prune and average over different sub-trees in a soft probabilistic manner. The algorithm scales efficiently to approximately one million features. State of the art predictive performance is demonstrated for toy examples and two neuroscience applications including up to a million features

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    State Estimation with Sets of Densities considering Stochastic and Systematic Errors

    Get PDF
    In practical applications, state estimation requires the consideration of stochastic and systematic errors. If both error types are present, an exact probabilistic description of the state estimate is not possible, so that common Bayesian estimators have to be questioned. This paper introduces a theoretical concept, which allows for incorporating unknown but bounded errors into a Bayesian inference scheme by utilizing sets of densities. In order to derive a tractable estimator, the Kalman filter is applied to ellipsoidal sets of means, which are used to bound additive systematic errors. Also, an extension to nonlinear system and observation models with ellipsoidal error bounds is presented. The derived estimator is motivated by means of two example applications
    • …
    corecore