471 research outputs found

    Combined Sparse Regularization for Nonlinear Adaptive Filters

    Full text link
    Nonlinear adaptive filters often show some sparse behavior due to the fact that not all the coefficients are equally useful for the modeling of any nonlinearity. Recently, a class of proportionate algorithms has been proposed for nonlinear filters to leverage sparsity of their coefficients. However, the choice of the norm penalty of the cost function may be not always appropriate depending on the problem. In this paper, we introduce an adaptive combined scheme based on a block-based approach involving two nonlinear filters with different regularization that allows to achieve always superior performance than individual rules. The proposed method is assessed in nonlinear system identification problems, showing its effectiveness in taking advantage of the online combined regularization.Comment: This is a corrected version of the paper presented at EUSIPCO 2018 and published on IEEE https://ieeexplore.ieee.org/document/855295

    Combinations of adaptive filters

    Get PDF
    Adaptive filters are at the core of many signal processing applications, ranging from acoustic noise supression to echo cancelation [1], array beamforming [2], channel equalization [3], to more recent sensor network applications in surveillance, target localization, and tracking. A trending approach in this direction is to recur to in-network distributed processing in which individual nodes implement adaptation rules and diffuse their estimation to the network [4], [5].The work of Jerónimo Arenas-García and Luis Azpicueta-Ruiz was partially supported by the Spanish Ministry of Economy and Competitiveness (under projects TEC2011-22480 and PRI-PIBIN-2011-1266. The work of Magno M.T. Silva was partially supported by CNPq under Grant 304275/2014-0 and by FAPESP under Grant 2012/24835-1. The work of Vítor H. Nascimento was partially supported by CNPq under grant 306268/2014-0 and FAPESP under grant 2014/04256-2. The work of Ali Sayed was supported in part by NSF grants CCF-1011918 and ECCS-1407712. We are grateful to the colleagues with whom we have shared discussions and coauthorship of papers along this research line, especially Prof. Aníbal R. Figueiras-Vidal

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    fMRI scanner noise interaction with affective neural processes

    Get PDF
    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes

    A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling

    Get PDF
    Nonlinear models are known to provide excellent performance in real-world applications that often operate in nonideal conditions. However, such applications often require online processing to be performed with limited computational resources. To address this problem, we propose a new class of efficient nonlinear models for online applications. The proposed algorithms are based on linear-in-the-parameters (LIPs) nonlinear filters using functional link expansions. In order to make this class of functional link adaptive filters (FLAFs) efficient, we propose low-complexity expansions and frequency-domain adaptation of the parameters. Among this family of algorithms, we also define the partitioned-block frequency-domain FLAF (FD-FLAF), whose implementation is particularly suitable for online nonlinear modeling problems. We assess and compare FD-FLAFs with different expansions providing the best possible tradeoff between performance and computational complexity. Experimental results prove that the proposed algorithms can be considered as an efficient and effective solution for online applications, such as the acoustic echo cancellation, even in the presence of adverse nonlinear conditions and with limited availability of computational resources

    The physiological bases of hidden noise-induced hearing loss: protocol for a functional neuroimaging study

    Get PDF
    Background: Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as “hidden hearing loss” have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective: Our Medical Research Council (MRC) funded programme aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss, (2) investigate if there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems, and (3) explore the relation between subcortical functional Magnetic Resonance Imaging (fMRI) measures and the auditory brainstem response (ABR). Methods: Individuals aged 25 to 40 years with pure tone hearing thresholds ≤ 20 dB HL over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results: This article reports the study protocol. The programme grant was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions: This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss

    주파수 및 시간적 상관관계에 기반한 음향학적 에코 억제 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 김남수.In the past decades, a number of approaches have been dedicated to acoustic echo cancellation and suppression which reduce the negative effects of acoustic echo, namely the acoustic coupling between the loudspeaker and microphone in a room. In particular, the increasing use of full-duplex telecommunication systems has led to the requirement of faster and more reliable acoustic echo cancellation algorithms. The solutions have been based on adaptive filters, but the length of these filters has to be long enough to consider most of the echo signal and linear filtering in these algorithms may be limited to remove the echo signal in various environments. In this thesis, a novel stereophonic acoustic echo suppression (SAES) technique based on spectral and temporal correlations is proposed in the short-time Fourier transform (STFT) domain. Unlike traditional stereophonic acoustic echo cancellation, the proposed algorithm estimates the echo spectra in the STFT domain and uses a Wiener filter to suppress echo without performing any explicit double-talk detection. The proposed approach takes account of interdependencies among components in adjacent time frames and frequency bins, which enables more accurate estimation of the echo signals. Due to the limitations of power amplifiers or loudspeakers, the echo signals captured in the microphones are not in a linear relationship with the far-end signals even when the echo path is perfectly linear. The nonlinear components of the echo cannot be successfully removed by a linear acoustic echo canceller. The remaining echo components in the output of acoustic echo suppression (AES) can be further suppressed by applying residual echo suppression (RES) algorithms. In this thesis, we propose an optimal RES gain estimation based on deep neural network (DNN) exploiting both the far-end and the AES output signals in all frequency bins. A DNN structure is introduced as a regression function representing the complex nonlinear mapping from these signals to the optimal RES gain. Because of the capability of the DNN, the spectro-temporal correlations in the full-band can be considered while finding the nonlinear function. The proposed method does not require any explicit double-talk detectors to deal with single-talk and double-talk situations. One of the well-known approaches for nonlinear acoustic echo cancellation is an adaptive Volterra filtering and various algorithms based on the Volterra filter were proposed to describe the characteristics of nonlinear echo and showed the better performance than the conventional linear filtering. However, the performance might be not satisfied since these algorithms could not consider the full correlation for the nonlinear relationship between the input signal and far-end signal in time-frequency domain. In this thesis, we propose a novel DNN-based approach for nonlinear acoustic echo suppression (NAES), extending the proposed RES algorithm. Instead of estimating the residual gain for suppressing the nonlinear echo components, the proposed algorithm straightforwardly recovers the near-end speech signal through the direct gain estimation obtained from DNN frameworks on the input and far-end signal. For echo aware training, a priori and a posteriori signal-to-echo ratio (SER) are introduced as additional inputs of the DNN for tracking the change of the echo signal. In addition, the multi-task learning (MTL) to the DNN-based NAES is combined to the DNN incorporating echo aware training for robustness. In the proposed system, an additional task of double-talk detection is jointly trained with the primary task of the gain estimation for NAES. The DNN can learn the good representations which can suppress more in single-talk periods and improve the gain estimates in double-talk periods through the MTL framework. Besides, the proposed NAES using echo aware training and MTL with double-talk detection makes the DNN be more robust in various conditions. The proposed techniques show significantly better performance than the conventional AES methods in both single- and double-talk periods. As a pre-processing of various applications such as speech recognition and speech enhancement, these approaches can help to transmit the clean speech and provide an acceptable communication in full-duplex real environments.Chapter 1 Introduction 1 1.1 Background 1 1.2 Scope of thesis 3 Chapter 2 Conventional Approaches for Acoustic Echo Suppression 7 2.1 Single Channel Acoustic Echo Cancellation and Suppression 8 2.1.1 Single Channel Acoustic Echo Cancellation 8 2.1.2 Adaptive Filters for Acoustic Echo Cancellation 10 2.1.3 Acoustic Echo Suppression Based on Spectral Modication 11 2.2 Residual Echo Suppression 13 2.2.1 Spectral Feature-based Nonlinear Residual Echo Suppression 15 2.3 Stereophonic Acoustic Echo Cancellation 17 2.4 Wiener Filtering for Stereophonic Acoustic Echo Suppression 20 Chapter 3 Stereophonic Acoustic Echo Suppression Incorporating Spectro-Temporal Correlations 25 3.1 Introduction 25 3.2 Linear Time-Invariant Systems in the STFT Domain with Crossband Filtering 26 3.3 Enhanced SAES (ESAES) Utilizing Spectro-Temporal Correlations 29 3.3.1 Problem Formulation 31 3.3.2 Estimation of Extended PSD Matrices, Echo Spectra, and Gain Function 34 3.3.3 Complexity of the Proposed ESAES Algorithm 36 3.4 Experimental Results 37 3.5 Summary 41 Chapter 4 Nonlinear Residual Echo Suppression Based on Deep Neural Network 43 4.1 Introduction 43 4.2 A Brief Review on RES 45 4.3 Deep Neural Networks 46 4.4 Nonlinear RES using Deep Neural Network 49 4.5 Experimental Results 52 4.5.1 Combination with Stereophonic Acoustic Echo Suppression 59 4.6 Summary 61 Chapter 5 Enhanced Deep Learning Frameworks for Nonlinear Acoustic Echo Suppression 69 5.1 Introduction 69 5.2 DNN-based Nonlinear Acoustic Echo Suppression using Echo Aware Training 72 5.3 Multi-Task Learning for NAES 75 5.4 Experimental Results 78 5.5 Summary 82 Chapter 6 Conclusions 89 Bibliography 91 요약 101Docto

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore