26 research outputs found

    Trajectory planning of a quadrotor to monitor dependent people

    Get PDF
    This article introduces a framework for assisting dependent people at home through a vision-based autonomous unmanned aerial vehicle (UAV). Such an aircraft equipped with onboard cameras can be useful for monitoring and recognizing a dependent's activity. This work is focused on the problem of planning the flight path of a quadrotor to perform monitoring tasks. The objective is to design a trajectory planning algorithm that allows the UAV to position itself for the sake of capturing images of the dependent person's face. These images will be later treated by a base station to evaluate the persons emotional state, together with his/her behavior, this way determining the assistance needed in each situation. Numerical simulations have been carried out to validate the proposed algorithms. The results show the effectiveness of the trajectory planner to generate smooth references to our previously designed GPI (generalized proportional integral) controller. This demonstrates that a quadrotor is able to perform monitoring flights with a high motion precision.- This work has been partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (AEI)/European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant. Lidia M. Belmonte holds FPU014/05283 scholarship from Spanish Ministerio de Educacion y Formacion Profesional

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Vision systems for autonomous aircraft guidance

    Get PDF

    Path Planning for Single Unmanned Aerial Vehicle by Separately Evolving Waypoints

    Get PDF
    Evolutionary algorithm-based unmanned aerial vehicle (UAV) path planners have been extensively studied for their effectiveness and flexibility. However, they still suffer from a drawback that the high-quality waypoints in previous candidate paths can hardly be exploited for further evolution, since they regard all the waypoints of a path as an integrated individual. Due to this drawback, the previous planners usually fail when encountering lots of obstacles. In this paper, a new idea of separately evaluating and evolving waypoints is presented to solve this problem. Concretely, the original objective and constraint functions of UAVs path planning are decomposed into a set of new evaluation functions, with which waypoints on a path can be evaluated separately. The new evaluation functions allow waypoints on a path to be evolved separately and, thus, high-quality waypoints can be better exploited. On this basis, the waypoints are encoded in a rotated coordinate system with an external restriction and evolved with JADE, a state-of-the-art variant of the differential evolution algorithm. To test the capabilities of the new planner on planning obstacle-free paths, five scenarios with increasing numbers of obstacles are constructed. Three existing planners and four variants of the proposed planner are compared to assess the effectiveness and efficiency of the proposed planner. The results demonstrate the superiority of the proposed planner and the idea of separate evolution

    Towards autonomy of a quadrotor UAV

    Get PDF
    As the potential of unmanned aerial vehicles rapidly increases, there is a growing interest in rotary vehicles as well as fixed wing. The quadrotor is small agile rotary vehicle controlled by variable speed prop rotors. With no need for a swash plate the vehicle is low cost as well as dynamically simple. In order to achieve autonomous flight, any potential control algorithm must include trajectory generation and trajectory following. Trajectory generation can be done using direct or indirect methods. Indirect methods provide an optimal solution but are hard to solve for anything other than the simplest of cases. Direct methods in comparison are often sub-optimal but can be applied to a wider range of problems. Trajectory optimization is typically performed within the control space, however, by posing the problem in the output space, the problem can be simplified. Differential flatness is a property of some dynamical systems which allows dynamic inversion and hence, output space optimization. Trajectory following can be achieved through any number of linear control techniques, this is demonstrated whereby a single trajectory is followed using LQR, this scheme is limited however, as the vehicle is unable to adapt to environmental changes. Model based predictive control guarantees constraint satisfaction at every time step, this however is time consuming and therefore, a combined controller is proposed benefiting from the adaptable nature of MBPC and the robustness and simplicity of LQR control. There are numerous direct methods for trajectory optimization both in the output and control space. Taranenko’s direct method has a number of benefits over other techniques, including the use of a virtual argument, which separates the optimal path and the speed problem. This enables the algorithm to solve the optimal time problem, the optimal fuel problem or a combination of the two, without a deviation from the optimal path. In order to implement such a control scheme, the issues of feedback, communication and control action computation, require consideration. This work discusses the issues with instrumentation and communication encountered when developing the control system and provides open loop test results. This work also extends the proposed control schemes to consider the problem of multiple vehicle flight rendezvous. Specifically the problem of rendezvous when there is no communication link, limited visibility and no agreed rendezvous point. Using Taranenko’s direct method multiple vehicle rendezvous is simulated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bioinspired Control of Rudderless Morphing UAVs

    Full text link
    Morphing to seamlessly alter aircraft geometry for either multi-mission or adaptive fly-by-feel flight has recently become an emerging field of research. With the added benefits of tailored aerodynamics, an aircraft no longer needs to be designed to suit a single cruise flight condition. This is particularly useful for small Unmanned Aerial Vehicles (UAVs) which, like birds and insects, tend to operate at lower altitudes and even in urban environments where the flow can frequently change drastically. The primary objective of this research is to investigate morphing applications for rudderless UAVs, which have seldom been studied prior to this point, through bioinspiration. As natural fliers undergo multi-scale low-altitude morphing to adapt to changes in either flight objective or aerodynamic conditions, they are prime subjects for investigation. This is accomplished through both analytical aerodynamic modeling, and experimental design and investigation of novel morphing actuators using Macro Fiber Composites (MFCs). Using these smart material actuators, complex shape change such as spanwise camber morphing and three-dimensional bending-twisting coupling is achieved. This dissertation presents three main contributions to the field of morphing aircraft. The first contribution is an analytical derivation that assesses the impact of scale and altitude on flight. This is aimed at justifying the need for morphing technologies particularly at the UAV scale by assessing the impact of winds on flight velocity and direction. More specifically, both a steady wind and a quasi-steady sharp-edge cross wind were assessed to characterize the response, and showed that low-altitude fliers are prone to drastic changes in flight path, acceleration, and sensitivity with respect to winds. A nonlinear Lifting Line Theory (LLT) model was also developed specifically for spanwise morphing aircraft. With this model, the spanwise geometry of a morphing wing can be tailored and optimized to achieve a desired aerodynamic outcome. As this model is capable of characterizing nonlinear aerodynamics, the spanwise wing geometry is tailored to recover from stall. A comprehensive analysis of possible adaptation scenarios is also conducted to characterize the limitations of the system and demonstrated excellent recovery capabilities of the spanwise morphing wing. Lastly, a novel bioinspired tail actuator is developed for multifunctional pitch and yaw control using MFCs. Two Finite Element Method (FEM) models are compared to determine both an appropriate method of modeling MFC actuators with custom non-rectangular geometries and fiber orientations, and the optimal fiber orientation to obtain adequate transverse and out-of-plane displacements. The optimized actuator was integrated into a bioinspired aircraft for wind tunnel testing. Experimental investigation was geared towards quantifying both pitch and yaw response of the actuator with respect to both changes in angle of attack and sideslip.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145843/1/llgamble_1.pd

    Technology Assessment of eVTOL Personal Air Transportation System

    Get PDF
    This thesis intended to provide a holistic vision on the potential consequences of the introduction of emerging electrical Vertical Takeoff and Landing (e VTOL) Personal Air Transportation System (PATS) to contribute to the forming of public and policy opinion, and to assess the impacts and the feasibility of that. Instead of looking from a detailed vehicle design viewpoint, we tried to understand the need, the impacts, and the perceptions and the concerns of stakeholders. Thus, it was set a framework and methodology starting with a technology assessment point of view in the light of transportation system analysis. Limitations of the current ground and airline transportation systems, increasing congestion, poor block speed, combined with expanding population and demand for affordable on- demand mobility are driving the development of future transportation technology and policy. The third wave of aeronautics might be the answer and could bring about great new capabilities for society that would bring aviation into a new age of being relevant in daily lives since eVTOL PATS is envisioned as the next logical step in the natural progression in the history of disruptive transportation system innovations. However, there are a lot of questions. Although there was difficulty since the system was an emerging air transportation mode, an interdisciplinary study has been conducted to assess the impacts of developing such a capability. The research questions were determined to address the research objectives. What is the current state of mobility and eVTOL air transportation mode? What are the potential benefits of eVTOL air transportation mode for user and society? What are the perceptions of service providers, regulator, and user? What are the main challenges including technology, regulation, operation, social and environment aspects to enable the system? What are the enabling technologies? Nevertheless, with the results obtained lately from the research activities, revolutionary technologies and regulations are bringing us closer to eVTOL PATS reality every day. It can be argued that a new socio-technical transition will come about like the transition from horse drawn carriers to cars. Even if it is still a long way to go, it seems rather likely that the time has been arriving in the next decade. Their existence and operation would therefore need to be taken into consideration for today’s planning considerations and construction projects to be able to have this emerging air transportation mode available in the future. As the technology underlying eVTOL PATS evolves, wider eVTOL adoption across various markets is likely to be supported further if a set of key challenges such as safety and security, ease of use and autonomy, noise, infrastructure, and air traffic management are overcome. Achieving drastic improvements in ease of use, safety and community acceptable noise are the most critical steps towards the future feasibility of this market. Multi-use demos and demonstrating successful operation with early vehicles, namely eVTOL PATS prototype field operations, will create public acceptance and understanding of potentials in emerging air transportation mode for public good, use and learn in multiple applications. The overall perception of the user, service provider and regulator are positive, and the support is high. Shortly, a successful implementation and sustainable transition will depend on overcoming technological hurdles, regulatory frameworks, operational safety, cost competitiveness, and sensibilities of the affected communities. There is a need to enable people and goods to have the convenience of on-demand, point-to-point safe travel, further, anywhere in less travel time, through a network of pocket airports/vertiports, and there is a significant potential benefit so that policy makers, regulators and metropoles’ transportation planning departments should consider an inclusion of eVTOL air transportation mode into the scenarios and policies of the future.Esta tese pretende fornecer uma visão holística sobre as potenciais consequências da introdução do Sistema de Transporte Aéreo Pessoal (PATS) de Decolagem e Pouso Vertical elétrico emergente (e VTOL) para contribuir para a formação de opinião pública e política, e para avaliar os impactos e a viabilidade disso. Em vez de olhar de um ponto de vista detalhado o projeto do veículo, tentamos entender a necessidade, os impactos, as percepções e as preocupações das partes interessadas. Assim, foi definido um quadro e uma metodologia partindo de um ponto de vista de avaliação de tecnologia à luz da análise do sistema de transporte. As limitações dos atuais sistemas de transporte terrestre e aéreo, o aumento do congestionamento, a baixa velocidade do tráfego, combinados com a expansão da população e a mobilidade com procura acessível estão impulsionando o desenvolvimento de futuras tecnologias e políticas de transporte. A terceira onda da aeronáutica pode ser a resposta e pode trazer grandes novas capacidades para a sociedade que trariam a aviação para uma nova era de ser relevante na vida cotidiana, uma vez que o VTOL PATS é visto como o próximo passo lógico na progressão natural na história das inovações disruptivas do sistema de transporte. No entanto, há muitas perguntas. Embora tenha havido dificuldade por se tratar de um modo de transporte aéreo emergente, um estudo interdisciplinar foi realizado para avaliar os impactos do desenvolvimento de tal capacidade. As questões de investigação foram determinadas para atender aos objetivos do projeto. Qual é o estado atual da mobilidade e do modo de transporte aéreo eVTOL? Quais são os benefícios potenciais do modo de transporte aéreo eVTOL para o utilizador e a sociedade? Quais são as percepções dos provedores de serviços, regulador e utilizador? Quais são os principais desafios, incluindo tecnologia, regulamentação, operação, aspectos sociais e ambientais para habilitar o sistema? Quais são as tecnologias facilitadoras? No entanto, com os resultados obtidos ultimamente nas atividades de pesquisa, tecnologias e regulamentações revolucionárias estão nos aproximando cada dia mais da realidade do VTOL PATS. Pode-se argumentar que uma nova transição sócio-técnica ocorrerá como a transição de carruagens puxadas por cavalos para automóveis. Mesmo que ainda seja um longo caminho a percorrer, parece bastante provável que a hora esteja chegando na próxima década. A sua existência e operação, portanto, precisam ser levadas em consideração para as questões de planeamento e projetos de construção de hoje para poder ter esse modo de transporte aéreo emergente disponível no futuro. À medida que a tecnologia subjacente ao eVTOL PATS evolui, é provável que a adoção mais ampla do eVTOL em vários mercados seja ainda mais apoiada se um conjunto de desafios importantes, como segurança e proteção, facilidade de uso e autonomia, ruído, infraestrutura e gestão de tráfego aéreo forem superados. Alcançar melhorias drásticas na facilidade de uso, segurança e ruído aceitável pela comunidade são os passos mais críticos para a viabilidade futura deste mercado. Demonstrações multi-uso e demonstração de operação bem- sucedida com veículos iniciais, ou seja, operações de campo do protótipo eVTOL PATS, criarão aceitação pública e compreensão dos potenciais no modo de transporte aéreo emergente para o bem público, uso e aprendizado em várias aplicações. A percepção geral do utilizador, prestador de serviço e regulador é positiva, e o suporte é alto. Uma implementação bem-sucedida e uma transição sustentável dependerá da superação de obstáculos tecnológicos, estruturas regulatórias, segurança operacional, competitividade de custos e sensibilidade das comunidades afetadas. Há uma necessidade de permitir que pessoas e mercadorias tenham a conveniência de viagens seguras de que necessitam, ponto a ponto, e além disso, em qualquer lugar em menos tempo de viagem. Isso pode ser feito por meio de uma rede de aeroportos/vertiports, e há um benefício potencial significativo para que os formuladores de políticas, reguladores e departamentos de planeamento de transporte das grandes metrópoles considerem a inclusão do modo de transporte aéreo eVTOL nos cenários e políticas do futuro
    corecore