24 research outputs found

    Design of a bidirectional energy buffer using a switched-capacitor converter and supercapacitors for an auxiliary EIS converter for fuel cell stacks

    Get PDF
    Fuel cell as an attractive clean energy source has gained a great deal of interest. To increase the durability and reliability of fuel cells, diagnostics systems that can detect degradation and faults inside fuel cell stacks in end applications are highly in need. Electrochemical impedance spectroscopy (EIS), among other methods, is a promising characterizing tool for diagnostics and condition monitoring of fuel cells. It was traditionally only applied to single-cell or short stacks at low-power levels and required special laboratory equipment, but was recently brought to high-power stacks too which was made possible by many technological advancements. This is mainly owing to a growing interest in performing in situ EIS as a non-destructive method without the need for dismantling the stack. Unlike traditional approaches which relied on extra equipment, converter-based EIS provides attractive solutions for this purpose. In this thesis, the design and utilization of a bidirectional energy buffer module composed of a switched-capacitor converter (SCC) and a supercapacitor string for a new auxiliary EIS converter solution is presented. The module is designed towards having a more compact auxiliary converter unit. The design of the proposed energy buffer module is investigated in detail and a guideline is provided considering the application-specific optimal conversion ratio, supercapacitor string capacitance, and the probable limitations imposed by high EIS frequencies on certain situations. In a nutshell, the proposed switched-capacitor converter module (SCCM) consists of a bidirectional high voltage-gain SCC connected with supercapacitor string helps with the compactness and miniaturization of the entire auxiliary EIS converter and eliminating the potential problems of electrolytic capacitors such as bulkiness and limited lifetime due to the impact of ripples. The SCCM energy buffer with a high voltage gain offers a high buffering ratio for utilizing supercapacitors as the energy storage device

    Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids

    Get PDF
    Electric Vehicles (EV) usage is increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. The EV charging stations are powered by the existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. The DC grid-based EV charging is more efficient than the AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). The RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. Also, charging stations require dedicated converter topologies, control strategies and need to follow the levels and standards. Based on the EV, ESU, and RES accessibility, the different types of microgrids architecture and control strategies are used to ensure the optimum operation at the EV charging point. Based on the above said merits, this review paper presents the different RES-connected architecture and control strategies used in EV charging stations. This study highlights the importance of different charging station architectures with the current power converter topologies proposed in the literature. In addition, the comparison of the microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of the charging station used for EV charging, in addition to controls and connectors used in the charging station, are discussed. The experiment-based energy management strategy is developed for controlling the power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize usage of RES consumption. This review also provides the challenges and opportunities for EV charging, considering selecting charging stations in the conclusion.publishedVersio

    Feasibility of quasi-square-wave zero-voltage-switching bi-directional dc/dc converters with gan hemts

    Get PDF
    There are trade-offs for each power converter design which are mainly dictated by the switching component and passive component ratings. Recent power electronic devices such as Gallium Nitride (GaN) transistors can improve the application range of power converter topologies with lower conduction and switching losses. These new capabilities brought by the GaN High Electron Mobility Transistors (HEMTs) inevitably changes the feasible operation ranges of power converters. This paper investigates the feasibility of Buck and Boost based bi-directional DC/DC converter which utilizes Quasi-Square-Wave (QSW) Zero Voltage Switching (ZVS) on GaN HEMTs. The proposed converter applies a high-switching frequency at high output power to maximize the power density at the cost of high current ripple with high frequency of operation which requires a design strategy for the passive components. An inductor design methodology is performed to operate at 28 APP with a switching frequency of 450 kHz. In order to minimize the high ripple current stress on the output capacitors an interleaving is performed. Finally, the proposed bi-directional converter is operated at 5.4 kW with 5.24 kW/L or 85.9 W/in3 volumetric power density with air-forced cooling. The converter performance is verified for buck and boost modes and full load efficiencies are recorded as 97.7% and 98.7%, respectively

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Review on unidirectional non-isolated high gain DC-DC converters for EV sustainable DC fast charging applications

    Get PDF
    Modern electrical transportation systems require eco-friendly refueling stations worldwide. This has attracted the interest of researchers toward a feasible optimal solution for electric vehicle (EV) charging stations. EV charging can be simply classified as Slow charging (domestic use), Fast charging and Ultrafast charging (commercial use). This study highlights recent advancements in commercial DC charging. The battery voltage varies widely from 36V to 900V according to the EVs. This study focuses on non-isolated unidirectional converters for off-board charging. Various standards and references for fast off-board charging have been proposed. Complete transportation is changed to EVs, which are charged by the grid supply obtained by burning natural fuels, contributing to environmental concerns. Sustainable charging from sustainable energy sources will make future EV completely eco-friendly transportation. The research gap in complete eco-friendly transit is located in interfacing sustainable energy sources and fast DC EV charging. The first step towards clean, eco-friendly transportation is identifying a suitable converter for bridging the research gap in this locality. A simple approach has been made to identify the suitable DC-DC converter for DC fast-charging EVs. This article carefully selected suitable topologies derived from Boost, SEPIC, Cuk, Luo, and Zeta converters for clean EV charging applications. A detailed study on the components count, voltage stress on the controlled and uncontrolled switches, voltage gain obtained, output voltage, power rating of the converters, switching frequency, efficiency obtained, and issues associated with the selected topologies are presented. The outcome of this study is presented as the research challenges or expectations of future converter topologies for charging
    corecore