6,894 research outputs found

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)

    Get PDF
    This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T

    Get PDF
    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms

    Expanding the role of functional mri in rehabilitation research

    Get PDF
    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) contrast has become a universal methodology in functional neuroimaging. However, the BOLD signal consists of a mix of physiological parameters and has relatively poor reproducibility. As fMRI becomes a prominent research tool for rehabilitation studies involving repeated measures of the human brain, more quantitative and stable fMRI contrasts are needed. This dissertation enhances quantitative measures to complement BOLD fMRI. These additional markers, cerebral blood flow (CBF) and cerebral blood volume (CBV) (and hence cerebral metabolic rate of oxygen (CMROâ‚‚) modeling) are more specific imaging markers of neuronal activity than BOLD. The first aim of this dissertation assesses feasibility of complementing BOLD with quantitative fMRI measures in subjects with central visual impairment. Second, image acquisition and analysis are developed to enhance quantitative fMRI by quantifying CBV while simultaneously acquiring CBF and BOLD images. This aim seeks to relax assumptions related to existing methods that are not suitable for patient populations. Finally, CBF acquisition using a low-cost local labeling coil, which improves image quality, is combined with simultaneous acquisition of two types of traditional BOLD contrast. The demonstrated enhancement of CBF, CBV and CMROâ‚‚measures can lead to better characterization of pathophysiology and treatment effects.Ph.D.Committee Chair: Hu, Xiaoping; Committee Member: Benkeser, Paul; Committee Member: Keilholz, Shella; Committee Member: Sathian, Krish; Committee Member: Schuchard, Ronal

    Quantitative MRI of Cerebral Arterial Blood Volume

    Get PDF
    Baseline cerebral arterial blood volume (CBVa) and its change are important for potential diagnosis of vascular dysfunctions, the determination of functional reactivity, and the interpretation of BOLD fMRI. To quantitative measure baseline CBVa non-invasively, we developed arterial spin labeling methods with magnetization transfer (MT) or bipolar gradients by utilizing differential MT or diffusion properties of tissue vs. arteries. Cortical CBVa of isoflurane-anesthetized rats was 0.6 – 1.4 ml/100 g. During 15-s forepaw stimulation, CBVa change was dominant, while venous blood volume change was minimal. This indicates that the venous CBV increase may be ignored for BOLD quantification for a stimulation duration of less than 15 s. By incorporating BOLD fMRI with varied MT effects in a cat visual cortical layer model, the highest ΔCBVa was observed at layer 4, while the highest BOLD signal was detected at the surface of the cortex, indicating that CBVa change is highly specific to neural activity. The CBVa MRI techniques provide quantified maps, thus, may be valuable tools for routine determination of vessel viability and function, as well as the identification of vascular dysfunction

    Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy

    Get PDF
    Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of non-invasive technology for use in freely diving animals. Here, we developed a non-invasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment

    Simultaneous acquisition of cerebral blood volume-, blood flow-, and blood oxygenation-weighted MRI signals at ultra-high magnetic field

    Get PDF
    Purpose Yang et al. proposed an MRI technique for the simultaneous acquisition of cerebral blood volume (CBV), cerebral blood flow (CBF), and blood oxygenation level-dependent (BOLD)-weighted MRI signals (9). The purpose of this study was to develop modified version of the Yang sequence, which utilizes the advantages of 7 Tesla, leading to a robust and reliable MRI sequence. MethodsThe inversion recovery-based MR pulse sequence introduced here involves slice-saturation slab-inversion vascular space occupancy (SI-SS-VASO) MRI, double echo planar imaging readouts for arterial spin labeling, and VASO in order to correct for BOLD contamination, and a separate BOLD acquisition to minimize inversion effects on the BOLD signal. A standard visual stimulus block design was used to evaluate the spatial and temporal characteristics of CBV-, CBF-, and BOLD-weighted images. ResultsThe high signal-to-noise ratio and spatial resolution of this method leads to robust activation maps. This technique enables the investigation of the differential spatial specificity and temporal characteristics of the different modalities. ConclusionThe pulse sequence could be a powerful tool for studies of neurovascular coupling, hemodynamic response, or calibrated BOLD. Magn Reson Med 74:513-517, 2015

    NONINVASIVE NEAR-INFRARED DIFFUSE OPTICAL MONITORING OF CEREBRAL HEMODYNAMICS AND AUTOREGULATION

    Get PDF
    Many cerebral diseases are associated with abnormal cerebral hemodynamics and impaired cerebral autoregulation (CA). CA is a mechanism to maintain cerebral blood flow (CBF) stable when mean arterial pressure (MAP) fluctuates. Evaluating these abnormalities requires direct measurements of cerebral hemodynamics and MAP. Several near-infrared diffuse optical instruments have been developed in our laboratory for hemodynamic measurements including near-infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS), hybrid NIRS/DCS, and dual-wavelength DCS flow-oximeter. We utilized these noninvasive technologies to quantify CBF and cerebral oxygenation in different populations under different physiological conditions/manipulations. A commercial finger plethysmograph was used to continuously monitor MAP. For investigating the impact of obstructive sleep apnea (OSA) on cerebral hemodynamics and CA, a portable DCS device was used to monitor relative changes of CBF (rCBF) during bilateral thigh cuff occlusion. Compared to healthy controls, smaller reductions in rCBF and MAP following cuff deflation were observed in patients with OSA, which might result from the impaired vasodilation. However, dynamic CAs quantified in time-domain (defined by rCBF drop/MAP drop) were not significantly different between the two groups. We also evaluated dynamic CA in frequency-domain, i.e., to quantify the phase shifts of low frequency oscillations (LFOs) at 0.1 Hz between cerebral hemodynamics and MAP under 3 different physiological conditions (i.e., supine resting, head-up tilt (HUT), paced breathing). To capture dynamic LFOs, a hybrid NIRS/DCS device was upgraded to achieve faster sampling rate and better signal-to-noise. We determined the best hemodynamic parameters (i.e., CBF, oxygenated and total hemoglobin concentrations) among the measured variables and optimal physiological condition (HUT) for detecting LFOs in healthy subjects. Finally, a novel dual-wavelength DCS flow-oximeter was developed to monitor cerebral hemodynamics during HUT-induced vasovagal presyncope (VVS) in healthy subjects. rCBF was found to have the best sensitivity for the assessment of VVS among the measured variables and was likely the final trigger of VVS. A threshold of ~50% rCBF decline was observed which can completely separate subjects with or without presyncope, suggesting its potential role for predicting VVS. With further development and applications, NIRS/DCS techniques are expected to have significant impacts on the evaluation of cerebral hemodynamics and autoregulation

    From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase

    Get PDF
    Near-infrared spectroscopy (NIRS) measurements of cytochrome-c-oxidase (CCO) have the potential to yield crucial information about cerebral metabolism at the patient bedside. Developments in instrumentation and the analytical methods used to resolve changes in CCO have led to many clinical applications of the measurement since its first demonstration in 1977 by Jöbsis. There is a substantial literature of work on measures of CCO in animal and in vitro studies; however, this review focuses on translational studies. Almost 40 years from the advent of the first measurement of CCO using NIRS, this signal continues to hold significant interest in our understanding of the human brain in health and disease. We discuss methodologies for obtaining NIRS measurements of CCO in the clinic and review studies in neonates and adults
    • …
    corecore