4,765 research outputs found

    Methods of Assessment and Clinical Relevance of QT Dynamics

    Get PDF
    The dependence on heart rate of the QT interval has been investigated for many years and several mathematical formulae have been proposed to describe the QT interval/heart rate (or QT interval/RR interval) relationship. While the most popular is Bazett’s formula, it overcorrects the QT interval at high heart rates and under-corrects it at slow heart rates. This formulae and many others similar ones, do not accurately describe the natural behaviour of the QT interval. The QT interval/RR interval relationship is generally described as QT dynamics. In recent years, several methods of its assessment have been proposed, the most popular of which is linear regression. An increased steepness of the linear QT/RR slope correlates with the risk of arrhythmic death following myocardial infarction. It has also been demonstrated that the QT interval adapts to heart rate changes with a delay (QT hysteresis) and that QT dynamics parameters vary over time. New methods of QT dynamics assessment that take into account these phenomena have been proposed. Using these methods, changes in QT dynamics have been observed in patients with advanced heart failure, and during morning hours in patients with ischemic heart disease and history of cardiac arrest. The assessment of QT dynamics is a new and promising tool for identifying patients at increased risk of arrhythmic events and for studying the effect of drugs on ventricular repolarisation

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 162, January 1977

    Get PDF
    This bibliography lists 189 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1976

    Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes

    Get PDF
    Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety

    Use of Multiscale Entropy to Characterize Fetal Autonomic Development

    Get PDF
    The idea that uterine environment and adverse events during fetal development could increase the chances of the diseases in adulthood was first published by David Barker in 1998. Since then, investigators have been employing several methods and methodologies for studying and characterizing the ontological development of the fetus, e.g., fetal movement, growth and cardiac metrics. Even with most recent and developed methods such as fetal magnetocardiography (fMCG), investigators are continuously challenged to study fetal development; the fetus is inaccessible. Finding metrics that realize the full capacity of characterizing fetal ontological development remains a technological challenge. In this thesis, the use and value of multiscale entropy to characterize fetal maturation across third trimester of gestation is studied. Using multiscale entropy obtained from participants of a clinical trial, we show that MSE can characterize increasing complexity due to maturation in the fetus, and can distinguish a growing and developing fetal system from a mature system where loss of irregularity is due to compromised complexity from increasing physiologic load. MSE scales add a nonlinear metric that seems to accurately reflect the ontological development of the fetus and hold promise for future use to investigate the effects of maternal stress, intrauterine growth restriction, or predict risk for sudden infant death syndrome

    Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Get PDF
    Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period) increased and parasympathetic activity (as measured by respiratory sinus arrhythmia) decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals

    Methods of Assessment and Clinical Relevance of QT Dynamics

    Get PDF
    The dependence on heart rate of the QT interval has been investigated for many years and several mathematical formulae have been proposed to describe the QT interval/heart rate (or QT interval/RR interval) relationship. While the most popular is Bazett’s formula, it overcorrects the QT interval at high heart rates and under-corrects it at slow heart rates. This formulae and many others similar ones, do not accurately describe the natural behaviour of the QT interval. The QT interval/RR interval relationship is generally described as QT dynamics. In recent years, several methods of its assessment have been proposed, the most popular of which is linear regression. An increased steepness of the linear QT/RR slope correlates with the risk of arrhythmic death following myocardial infarction. It has also been demonstrated that the QT interval adapts to heart rate changes with a delay (QT hysteresis) and that QT dynamics parameters vary over time. New methods of QT dynamics assessment that take into account these phenomena have been proposed. Using these methods, changes in QT dynamics have been observed in patients with advanced heart failure, and during morning hours in patients with ischemic heart disease and history of cardiac arrest. The assessment of QT dynamics is a new and promising tool for identifying patients at increased risk of arrhythmic events and for studying the effect of drugs on ventricular repolarisation

    Autonomic nervous system biomarkers from multi-modal and model-based signal processing in mental health and illness

    Get PDF
    Esta tesis se centra en técnicas de procesado multimodal y basado en modelos de señales para derivar parámetros fisiológicos, es decir, biomarcadores, relacionados con el sistema nervioso autónomo (ANS). El desarrollo de nuevos métodos para derivar biomarcadores de ANS no invasivos en la salud y la enfermedad mental ofrece la posibilidad de mejorar la evaluación del estrés y la monitorización de la depresión. Para este fin, el presente documento se estructura en tres partes principales. En la Parte I, se proporciona unaintroducción a la salud y la enfermedad mental (Cap. 1). Además, se presenta un marco teórico para investigar la etiología de los trastornos mentales y el papel del estrés en la enfermedad mental (Cap. 2). También se destaca la importancia de los biomarcadores no invasivos para la evaluación del ANS, prestando especial atención en la depresión clínica (Cap. 3, 4). En la Parte II, se proporciona el marco metodológico para derivar biomarcadores del ANS. Las técnicas de procesado de señales incluyen el análisis conjunto de la variabilidad del rítmo cardíaco (HRV) y la señal respiratoria (Cap. 6), técnicas novedosas para derivar la señal respiratoria del electrocardiograma (ECG) (Cap. 7) y un análisis robusto que se basa en modelar la forma de ondas del pulso del fotopletismograma (PPG) (Ch. 8). En la Parte III, los biomarcadores del ANS se evalúan en la quantificacióndel estrés (Cap. 9) y en la monitorización de la depresión (Ch. 10).Parte I: La salud mental no solo está relacionada con ese estado positivo de bienestar, en el que un individuo puede enfrentar a las situaciones estresantes de la vida, sino también con la ausencia de enfermedad mental. La enfermedad o trastorno mental se puede definir como un trastorno emocional, cognitivo o conductual que causa un deterioro funcional sustancial en una o más actividades importantes de la vida. Los trastornos mentales más comunes, que muchas veces coexisten, son la ansiedad y el trastorno depresivo mayor (MDD). La enfermedad mental tiene un impacto negativo en la calidad de vida, ya que se asocia con pérdidas considerables en la salud y el funcionamiento, y aumenta ignificativamente el riesgo de una persona de padecer enfermedades ardiovasculares.Un instigador común que subyace a la comorbilidad entre el MDD, la patologíacardiovascular y la ansiedad es el estrés mental. El estrés es común en nuestra vida de rítmo rapido e influye en nuestra salud mental. A corto plazo, ANS controla la respuesta cardiovascular a estímulos estresantes. La regulación de parámetros fisiológicos, como el rítmo cardíaco, la frecuencia respiratoria y la presión arterial, permite que el organismo responda a cambios repentinos en el entorno. Sin embargo, la adaptación fisiológica a un fenómeno ambiental que ocurre regularmente altera los sistemas biológicos involucrados en la respuesta al estrés. Las alteraciones neurobiológicas en el cerebro pueden alterar lafunción del ANS. La disfunción del ANS y los cambios cerebrales estructurales tienen un impacto negativo en los procesos cognitivos, emocionales y conductuales, lo que conduce al desarrollo de una enfermedad mental.Parte II: El desarrollo de métodos novedosos para derivar biomarcadores del ANS no invasivos ofrece la posibilidad de mejorar la evaluacón del estrés en individuos sanos y la disfunción del ANS en pacientes con MDD. El análisis conjunto de varias bioseñales (enfoquemultimodal) permite la cuantificación de interacciones entre sistemas biológicos asociados con ANS, mientras que el modelado de bioseãles y el análisis posterior de los parámetros del modelo (enfoque basado en modelos) permite la cuantificación robusta de cambios en mecanismos fisiológicos relacionados con el ANS. Un método novedoso, quetiene en cuenta los fenómenos de acoplo de fase y frecuencia entre la respiración y las señales de HRV para evaluar el acoplo cardiorrespiratorio no lineal cuadrático se propone en el Cap. 6.3. En el Cap. 7 se proponen nuevas técnicas paramejorar lamonitorización de la respiración. En el Cap. 8, para aumentar la robustez de algunas medidas morfológicas que reflejan cambios en el tonno arterial, se considera el modelado del pulso PPG como una onda principal superpuesta con varias ondas reflejadas.Parte III: Los biomarcadores del ANS se evalúan en la cuantificación de diferentes tipos de estrés, ya sea fisiológico o psicológico, en individuos sanos, y luego, en la monitorización de la depresión. En presencia de estrés mental (Cap. 9.1), inducido por tareas cognitivas, los sujetos sanos muestran un incremento en la frecuencia respiratoria y un mayor número de interacciones no lineales entre la respiración y la seãl de HRV. Esto podría estar asociado con una activación simpática, pero también con una respiración menos regular. En presencia de estrés hemodinámico (Cap. 9.2), inducido por un cambio postural, los sujetos sanos muestran una reducción en el acoplo cardiorrespiratoriono lineal cuadrático, que podría estar relacionado con una retracción vagal. En presencia de estrés térmico (Cap. 9.3), inducido por la exposición a emperaturas ambientales elevadas, los sujetos sanos muestran un aumento del equilibrio simpatovagal. Esto demuestra que los biomarcadores ANS son capaces de evaluar diferentes tipos de estrés y pueden explorarse más en el contexto de la monitorización de la depresión. En el Cap. 10, se evalúan las diferencias en la función del ANS entre elMDD y los sujetos sanos durante un protocolo de estrés mental, no solo con los valores brutos de los biomarcadores del ANS, sino también con los índices de reactividad autónoma, que reflejan la capacidad deun individuo para afrontar con una situación desafiante. Los resultados muestran que la depresión se asocia con un desequilibrio autonómico, que se caracteriza por una mayor actividad simpática y una reducción de la distensibilidad arterial. Los índices de reactividad autónoma cuantificados por cambios, entre etapas de estrés y de recuperación, en los sustitutos de la rigidez arterial, como la pérdida de amplitud de PPG en las ondas reflejadas, muestran el mejor rendimiento en términos de correlación con el grado de la depresión, con un coeficiente de correlación r = −0.5. La correlación negativa implicaque un mayor grado de depresión se asocia con una disminución de la reactividadautónoma. El poder discriminativo de los biomarcadores del ANS se aprecia también por su alto rendimiento diagnóstico para clasificar a los sujetos como MDD o sanos, con una precisión de 80.0%. Por lo tanto, se puede concluir que los biomarcadores del ANS pueden usarse para evaluar el estrés y que la distensibilidad arterial deteriorada podría constituir un biomarcador de salud mental útil en el seguimiento de la depresión.This dissertation is focused on multi-modal and model-based signal processing techniques for deriving physiological parameters, i.e. biomarkers, related to the autonomic nervous system (ANS). The development of novel approaches for deriving noninvasive ANS biomarkers in mental health and illness offers the possibility to improve the assessment of stress and the monitoring of depression. For this purpose, the present document is structured in three main parts. In Part I, an introduction to mental health and illness is provided (Ch. 1). Moreover, a theoretical framework for investigating the etiology of mental disorders and the role of stress in mental illness is presented (Ch. 2). The importance of noninvasive biomarkers for ANS assessment, paying particular attention in clinical depression, is also highlighted (Ch. 3, 4). In Part II, themethodological framework for deriving ANS biomarkers is provided. Signal processing techniques include the joint analysis of heart rate variability (HRV) and respiratory signals (Ch. 6), novel techniques for deriving the respiratory signal from electrocardiogram (ECG) (Ch. 7), and a robust photoplethysmogram(PPG)waveform analysis based on amodel-based approach (Ch. 8). In Part III, ANS biomarkers are evaluated in stress assessment (Ch. 9) and in the monitoring of depression (Ch. 10). Part I:Mental health is not only related to that positive state ofwell-being, inwhich an individual can cope with the normal stresses of life, but also to the absence of mental illness. Mental illness or disorder can be defined as an emotional, cognitive, or behavioural disturbance that causes substantial functional impairment in one or more major life activities. The most common mental disorders, which are often co-occurring, are anxiety and major depressive disorder (MDD). Mental illness has a negative impact on the quality of life, since it is associated with considerable losses in health and functioning, and increases significantly a person’s risk for cardiovascular diseases. A common instigator underlying the co-morbidity between MDD, cardiovascular pathology, and anxiety is mental stress. Stress is common in our fast-paced society and strongly influences our mental health. In the short term, ANS controls the cardiovascular response to stressful stimuli. Regulation of physiological parameters, such as heart rate, respiratory rate, and blood pressure, allows the organism to respond to sudden changes in the environment. However, physiological adaptation to a regularly occurring environmental phenomenon alters biological systems involved in stress response. Neurobiological alterations in the brain can disrupt the function of the ANS. ANS dysfunction and structural brain changes have a negative impact on cognitive, emotional, and behavioral processes, thereby leading to development of mental illness. Part II: The development of novel approaches for deriving noninvasive ANS biomarkers offers the possibility to improve the assessment of stress in healthy individuals and ANS dysfunction in MDD patients. Joint analysis of various biosignals (multi-modal approach) allows for the quantification of interactions among biological systems associated with ANS, while the modeling of biosignals and subsequent analysis of the model’s parameters (model-based approach) allows for the robust quantification of changes in physiological mechanisms related to the ANS. A novel method, which takes into account both phase and frequency locking phenomena between respiration and HRV signals, for assessing quadratic nonlinear cardiorespiratory coupling is proposed in Ch. 6.3. Novel techniques for improving the monitoring of respiration are proposed in Ch. 7. In Ch. 8, to increase the robustness for some morphological measurements reflecting arterial tone changes, the modeling of the PPG pulse as amain wave superposed with several reflected waves is considered. Part III: ANS biomarkers are evaluated in the assessment of different types of stress, either physiological or psychological, in healthy individuals, and then, in the monitoring of depression. In the presence of mental stress (Ch. 9.1), induced by cognitive tasks, healthy subjects show an increment in the respiratory rate and higher number of nonlinear interactions between respiration and HRV signal, which might be associated with a sympathetic activation, but also with a less regular breathing. In the presence of hemodynamic stress (Ch. 9.2), induced by a postural change, healthy subjects show a reduction in strength of the quadratic nonlinear cardiorespiratory coupling, whichmight be related to a vagal withdrawal. In the presence of heat stress (Ch. 9.3), induced by exposure to elevated environmental temperatures, healthy subjects show an increased sympathovagal balance. This demonstrates that ANS biomarkers are able to assess different types of stress and they can be further explored in the context of depression monitoring. In Ch. 10, differences in ANS function between MDD and healthy subjects during a mental stress protocol are assessed, not only with the raw values of ANS biomarkers but also with autonomic reactivity indices, which reflect the ability of an individual to copewith a challenging situation. Results show that depression is associated with autonomic imbalance, characterized by increased sympathetic activity and reduced arterial compliance. Autonomic reactivity indices quantified by changes, from stress to recovery, in arterial stiffness surrogates, such as the PPG amplitude loss in wave reflections, show the best performance in terms of correlation with depression severity, yielding to correlation coefficient r = −0.5. The negative correlation implies that a higher degree of depression is associated with a decreased autonomic reactivity. The discriminative power of ANS biomarkers is supported by their high diagnostic performance for classifying subjects as having MDD or not, yielding to accuracy of 80.0%. Therefore, it can be concluded that ANS biomarkers can be used for assessing stress and that impaired arterial compliance might constitute a biomarker of mental health useful in the monitoring of depression.<br /

    A Model for the Genesis of Arterial Pressure Mayer Waves from Heart Rate and Sympathetic Activity

    Full text link
    Both theoretic models and cross-spectral analyses suggest that an oscillating sympathetic nervous outflow generates the low frequency arterial pressure fluctuations termed Mayer waves. Fluctuations in heart rate also have been suggested to relate closely to Mayer waves, but empiric models have not assessed the joint causative influences of hemt rate and sympathetic activity. Therefore, we constructed a model based simply upon the hemodynamic equation deriving from Ohm's Law. With this model, we determined time relations and relative contributions of heart rate and sympathetic activity to the genesis of arterial pressure Mayer waves. We assessed data from eight healthy young volunteers in the basal state and in a high sympathetic state known to produce concurrent increases in sympathetic nervous outflow and Mayer wave amplitude. We fit the Mayer waves (0.05-0.20 Hz) in mean arterial pressure by the weighted sum ofleading oscillations in heart rate and sympathetic nerve activity. This model of our data showed heart rate oscillations leading by 2-3.75 seconds were responsible for almost half of the variance in arterial pressure (basal R^2=0.435±0.140, high sympathetic R^2=0.438±0.180). Surprisingly, sympathetic activity (lead 0-5 seconds) contributed only modestly to the explained variance in Mayer waves during either sympathetic state (basal: ∆R^2=0.046±0.026; heightened: ∆R^2=0.085±0.036). Thus, it appears that heart rate oscillations contribute to Mayer waves in a simple linear fashion, whereas sympathetic fluctuations contribute little to Mayer waves in this way. Although these results do not exclude an important vascular sympathetic role, they do suggest that additional Ji1ctors, such as sympathetic transduction into vascular resistance, modulate its influence.Binda and Fred Shuman Foundation; National Institute on Aging (AG14376)
    corecore