33 research outputs found

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure

    Variational and linearly implicit integrators, with applications

    Get PDF
    We show that symplectic and linearly implicit integrators proposed by Zhang & Skeel (1997, Cheap implicit symplectic integrators. Appl. Numer. Math., 25, 297–302) are variational linearizations of Newmark methods. When used in conjunction with penalty methods (i.e., methods that replace constraints by stiff potentials), these integrators permit coarse time-stepping of holonomically constrained mechanical systems and bypass the resolution of nonlinear systems. Although penalty methods are widely employed, an explicit link to Lagrange multiplier approaches appears to be lacking; such a link is now provided (in the context of two-scale flow convergence (Tao, M., Owhadi, H. & Marsden, J. E. (2010) Nonintrusive and structure-preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul., 8, 1269–1324). The variational formulation also allows efficient simulations of mechanical systems on Lie groups

    Space-time FLAVORS: finite difference, multisymlectic, and pseudospectral integrators for multiscale PDEs

    Get PDF
    We present a new class of integrators for stiff PDEs. These integrators are generalizations of FLow AVeraging integratORS (FLAVORS) for stiff ODEs and SDEs introduced in [Tao, Owhadi and Marsden 2010] with the following properties: (i) Multiscale: they are based on flow averaging and have a computational cost determined by mesoscopic steps in space and time instead of microscopic steps in space and time; (ii) Versatile: the method is based on averaging the flows of the given PDEs (which may have hidden slow and fast processes). This bypasses the need for identifying explicitly (or numerically) the slow variables or reduced effective PDEs; (iii) Nonintrusive: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale; (iv) Convergent over two scales: strongly over slow processes and in the sense of measures over fast ones; (v) Structure-preserving: for stiff Hamiltonian PDEs (possibly on manifolds), they can be made to be multi-symplectic, symmetry-preserving (symmetries are group actions that leave the system invariant) in all variables and variational

    A class of robust numerical methods for solving dynamical systems with multiple time scales

    Get PDF
    In this paper, we develop a class of robust numerical methods for solving dynamical systems with multiple time scales. We first represent the solution of a multiscale dynamical system as a transformation of a slowly varying solution. Then, under the scale separation assumption, we provide a systematic way to construct the transformation map and derive the dynamic equation for the slowly varying solution. We also provide the convergence analysis of the proposed method. Finally, we present several numerical examples, including ODE system with three and four separated time scales to demonstrate the accuracy and efficiency of the proposed method. Numerical results verify that our method is robust in solving ODE systems with multiple time scale, where the time step does not depend on the multiscale parameters

    Numerical integrators for motion under a strong constraining force

    Full text link
    This paper deals with the numerical integration of Hamiltonian systems in which a stiff anharmonic potential causes highly oscillatory solution behavior with solution-dependent frequencies. The impulse method, which uses micro- and macro-steps for the integration of fast and slow parts, respectively, does not work satisfactorily on such problems. Here it is shown that variants of the impulse method with suitable projection preserve the actions as adiabatic invariants and yield accurate approximations, with macro-stepsizes that are not restricted by the stiffness parameter

    A class of robust numerical methods for solving dynamical systems with multiple time scales

    Get PDF
    In this paper, we develop a class of robust numerical methods for solving dynamical systems with multiple time scales. We first represent the solution of a multiscale dynamical system as a transformation of a slowly varying solution. Then, under the scale separation assumption, we provide a systematic way to construct the transformation map and derive the dynamic equation for the slowly varying solution. We also provide the convergence analysis of the proposed method. Finally, we present several numerical examples, including ODE system with three and four separated time scales to demonstrate the accuracy and efficiency of the proposed method. Numerical results verify that our method is robust in solving ODE systems with multiple time scale, where the time step does not depend on the multiscale parameters
    corecore