403 research outputs found

    Nonequilibrium statistical mechanics of swarms of driven particles

    Full text link
    As a rough model for the collective motions of cells and organisms we develop here the statistical mechanics of swarms of self-propelled particles. Our approach is closely related to the recently developed theory of active Brownian motion and the theory of canonical-dissipative systems. Free motion and motion of a swarms confined in an external field is studied. Briefly the case of particles confined on a ring and interacting by repulsive forces is studied. In more detail we investigate self-confinement by Morse-type attracting forces. We begin with pairs N = 2; the attractors and distribution functions are discussed, then the case N > 2 is discussed. Simulations for several dynamical modes of swarms of active Brownian particles interacting by Morse forces are presented. In particular we study rotations, drift, fluctuations of shape and cluster formation.Comment: 11 pages, 2 figure

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Canonical active Brownian motion

    Full text link
    Active Brownian motion is the complex motion of active Brownian particles. They are active in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken further to include also couplings to the potential energy, which finally leads to a general theory of canonical dissipative systems. Explicit analytical and numerical studies are done for the motion of one particle in harmonic external potentials. Apart from stationary solutions, we study non-equilibrium dynamics and show the existence of various bifurcation phenomena.Comment: 11 pages, 6 figures, a few remarks and references adde

    State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System

    Full text link
    We study a class of swarming problems wherein particles evolve dynamically via pairwise interaction potentials and a velocity selection mechanism. We find that the swarming system undergoes various changes of state as a function of the self-propulsion and interaction potential parameters. In this paper, we utilize a procedure which, in a definitive way, connects a class of individual-based models to their continuum formulations and determine criteria for the validity of the latter. H-stability of the interaction potential plays a fundamental role in determining both the validity of the continuum approximation and the nature of the aggregation state transitions. We perform a linear stability analysis of the continuum model and compare the results to the simulations of the individual-based one

    Thermal and Athermal Swarms of Self-Propelled Particles

    Full text link
    Swarms of self-propelled particles exhibit complex behavior that can arise from simple models, with large changes in swarm behavior resulting from small changes in model parameters. We investigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using molecular dynamics simulations optimized for GPUs. We find a variety of swarms of different overall shape assemble spontaneously and that for certain Morse potential parameters coexisting structures are observed. We report a rich "phase diagram" of athermal swarm structures observed across a broad range of interaction parameters. Unlike the structures formed in equilibrium self-assembly, we find that the probability of forming a self-propelled swarm can be biased by the choice of initial conditions. We investigate how thermal noise influences swarm formation and demonstrate ways it can be exploited to reconfigure one swarm into another. Our findings validate and extend previous observations of self-propelled Morse swarms and highlight open questions for predictive theories of nonequilibrium self-assembly.Comment: 21 pages, 7 figure

    Nonequilibrium Brownian motion beyond the effective temperature

    Full text link
    The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.Comment: 10 pages, 5 figure

    Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles

    Full text link
    A ring-kinetic theory for Vicsek-style models of self-propelled agents is derived from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle pre-collisional correlations and cluster formation which both seem important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small density expansion of the collision operator and derive the first two equations of the BBGKY-hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not too small noises and mean free paths. This shows that there is parameter ranges in Vicsek-like models where the correlated closure of the BBGKY-hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed
    corecore