875 research outputs found

    Longest Path and Cycle Transversal and Gallai Families

    Get PDF
    A longest path transversal in a graph G is a set of vertices S of G such that every longest path in G has a vertex in S. The longest path transversal number of a graph G is the size of a smallest longest path transversal in G and is denoted lpt(G). Similarly, a longest cycle transversal is a set of vertices S in a graph G such that every longest cycle in G has a vertex in S. The longest cycle transversal number of a graph G is the size of a smallest longest cycle transversal in G and is denoted lct(G). A Gallai family is a family of graphs whose connected members have longest path transversal number 1. In this paper we find several Gallai families and give upper bounds on lpt(G) and lct(G) for general graphs and chordal graphs in terms of |V(G)|

    Intersection of Longest Paths in Graph Theory and Predicting Performance in Facial Recognition

    Get PDF
    A set of subsets is said to have the Helly property if the condition that each pair of subsets has a non-empty intersection implies that the intersection of all subsets has a non-empty intersection. In 1966, Gallai noticed that the set of all longest paths of a connected graph is pairwise intersecting and asked if the set had the Helly property. While it is not true in general, a number of classes of graphs have been shown to have the property. In this dissertation, we show that K4-minor-free graphs, interval graphs, circular arc graphs, and the intersection graphs of spider graphs are classes that have this property. The accuracy of facial recognition algorithms on images taken in controlled conditions has improved significantly over the last two decades. As the focus is turning to more unconstrained or relaxed conditions and toward videos, there is a need to better understand what factors influence performance. If these factors were better understood, it would be easier to predict how well an algorithm will perform when new conditions are introduced. Previous studies have studied the effect of various factors on the verification rate (VR), but less attention has been paid to the false accept rate (FAR). In this dissertation, we study the effect various factors have on the FAR as well as the correlation between marginal FAR and VR. Using these relationships, we propose two models to predict marginal VR and demonstrate that the models predict better than using the previous global VR

    Three problems on well-partitioned chordal graphs

    Get PDF
    In this work, we solve three problems on well-partitioned chordal graphs. First, we show that every connected (resp., 2-connected) well-partitioned chordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time constructible) tree 3-spanner, while the complexity status of the Tree 3-Spanner problem remains open on chordal graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show that the problem of finding a minimum-size geodetic set is polynomial-time solvable on well-partitioned chordal graphs. This is the first example of a problem that is NP -hard on chordal graphs and polynomial-time solvable on well-partitioned chordal graphs. Altogether, these results reinforce the significance of this recently defined graph class as a tool to tackle problems that are hard or unsolved on chordal graphs.acceptedVersio

    Helly meets Garside and Artin

    Get PDF
    A graph is Helly if every family of pairwise intersecting combinatorial balls has a nonempty intersection. We show that weak Garside groups of finite type and FC-type Artin groups are Helly, that is, they act geometrically on Helly graphs. In particular, such groups act geometrically on spaces with convex geodesic bicombing, equipping them with a nonpositive-curvature-like structure. That structure has many properties of a CAT(0) structure and, additionally, it has a combinatorial flavor implying biautomaticity. As immediate consequences we obtain new results for FC-type Artin groups (in particular braid groups and spherical Artin groups) and weak Garside groups, including e.g.\ fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex reflection groups, and one-relator groups with non-trivial center. Among the results are: biautomaticity, existence of EZ and Tits boundaries, the Farrell-Jones conjecture, the coarse Baum-Connes conjecture, and a description of higher order homological and homotopical Dehn functions. As a mean of proving the Helly property we introduce and use the notion of a (generalized) cell Helly complex.Comment: Small modifications according to the referee report, updated references. Final accepted versio
    • …
    corecore