123 research outputs found

    An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming

    Get PDF
    Powerful interior-point methods (IPM) based commercial solvers, such as Gurobi and Mosek, have been hugely successful in solving large-scale linear programming (LP) problems. The high efficiency of these solvers depends critically on the sparsity of the problem data and advanced matrix factorization techniques. For a large scale LP problem with data matrix AA that is dense (possibly structured) or whose corresponding normal matrix AATAA^T has a dense Cholesky factor (even with re-ordering), these solvers may require excessive computational cost and/or extremely heavy memory usage in each interior-point iteration. Unfortunately, the natural remedy, i.e., the use of iterative methods based IPM solvers, although can avoid the explicit computation of the coefficient matrix and its factorization, is not practically viable due to the inherent extreme ill-conditioning of the large scale normal equation arising in each interior-point iteration. To provide a better alternative choice for solving large scale LPs with dense data or requiring expensive factorization of its normal equation, we propose a semismooth Newton based inexact proximal augmented Lagrangian ({\sc Snipal}) method. Different from classical IPMs, in each iteration of {\sc Snipal}, iterative methods can efficiently be used to solve simpler yet better conditioned semismooth Newton linear systems. Moreover, {\sc Snipal} not only enjoys a fast asymptotic superlinear convergence but is also proven to enjoy a finite termination property. Numerical comparisons with Gurobi have demonstrated encouraging potential of {\sc Snipal} for handling large-scale LP problems where the constraint matrix AA has a dense representation or AATAA^T has a dense factorization even with an appropriate re-ordering.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    Nonsmooth Optimization; Proceedings of an IIASA Workshop, March 28 - April 8, 1977

    Get PDF
    Optimization, a central methodological tool of systems analysis, is used in many of IIASA's research areas, including the Energy Systems and Food and Agriculture Programs. IIASA's activity in the field of optimization is strongly connected with nonsmooth or nondifferentiable extreme problems, which consist of searching for conditional or unconditional minima of functions that, due to their complicated internal structure, have no continuous derivatives. Particularly significant for these kinds of extreme problems in systems analysis is the strong link between nonsmooth or nondifferentiable optimization and the decomposition approach to large-scale programming. This volume contains the report of the IIASA workshop held from March 28 to April 8, 1977, entitled Nondifferentiable Optimization. However, the title was changed to Nonsmooth Optimization for publication of this volume as we are concerned not only with optimization without derivatives, but also with problems having functions for which gradients exist almost everywhere but are not continous, so that the usual gradient-based methods fail. Because of the small number of participants and the unusual length of the workshop, a substantial exchange of information was possible. As a result, details of the main developments in nonsmooth optimization are summarized in this volume, which might also be considered a guide for inexperienced users. Eight papers are presented: three on subgradient optimization, four on descent methods, and one on applicability. The report also includes a set of nonsmooth optimization test problems and a comprehensive bibliography

    Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery

    Full text link
    We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence \cO(1/\epsilon), where ϵ\epsilon is a pre-specified accuracy of the objective function value. We conduct thorough numerical simulations to illustrate that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR to solve a brain activity prediction problem and find that it is as competitive as a handcrafted model created by human experts. The R package \texttt{camel} implementing the proposed method is available on the Comprehensive R Archive Network \url{http://cran.r-project.org/web/packages/camel/}.Comment: Journal of Machine Learning Research, 201

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Convex Learning of Multiple Tasks and their Structure

    Get PDF
    Reducing the amount of human supervision is a key problem in machine learning and a natural approach is that of exploiting the relations (structure) among different tasks. This is the idea at the core of multi-task learning. In this context a fundamental question is how to incorporate the tasks structure in the learning problem.We tackle this question by studying a general computational framework that allows to encode a-priori knowledge of the tasks structure in the form of a convex penalty; in this setting a variety of previously proposed methods can be recovered as special cases, including linear and non-linear approaches. Within this framework, we show that tasks and their structure can be efficiently learned considering a convex optimization problem that can be approached by means of block coordinate methods such as alternating minimization and for which we prove convergence to the global minimum.Comment: 26 pages, 1 figure, 2 table
    corecore