425 research outputs found

    Selection Models for the Internal Quality of Fruit, based on Time Domain Laser Reflectance Spectroscopy

    Get PDF
    Time domain laser reflectance spectroscopy (TRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous measurement of two optical characteristics of the sample: light scattering inside the tissues and light absorption. Models to estimate non-destructively firmness, soluble solids and acid contents in tomato, apple, peach and nectarine were developed using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TRS, i.e. absorption and transport scattering coefficients, with chemical constituents (soluble solids and acids) and firmness, respectively. Classification models were created to sort fruits into three quality grades (‘low’, ‘medium’ and ‘high’), according to their firmness, soluble solids and acidity

    Nondestructive measurement of fruit and vegetable quality

    Get PDF
    We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these techniques rely on mathematical models and particular data processing methods, we discuss these where needed. We pay particular attention to techniques that can be implemented online in grading lines

    Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre-and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshousassessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed

    Models for Internal Quality Fruit Sorting, Based on Time- Domain Laser Reflectance Spectroscopy (TDRS)

    Get PDF
    Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity

    Mealiness Detection in Agricultural Crops: Destructive and Nondestructive Tests: A Review

    Get PDF
    Mealiness is known as an important internal quality attribute of fruits/vegetables, which has significant influence on consumer purchasing decisions. Mealiness has been a topic of research interest over the past several decades. A number of destructive and nondestructive techniques are introduced for mealiness detection. Nondestructive methods are more interesting because they are rapid, noninvasive, and suitable for real-time purposes. In this review, the concept of mealiness is presented for potato, apple, and peach, followed by an in-depth discussion about applications of destructive and nondestructive techniques developed for mealiness detection. The results suggest the potential of electromagnetic-based techniques for nondestructive mealiness evaluation. Further investigations are in progress to find more appropriate nondestructive techniques as well as cost and performance

    Nondestructive Multivariate Classification of Codling Moth Infested Apples Using Machine Learning and Sensor Fusion

    Get PDF
    Apple is the number one on the list of the most consumed fruits in the United States. The increasing market demand for high quality apples and the need for fast, and effective quality evaluation techniques have prompted research into the development of nondestructive evaluation methods. Codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae), is the most devastating pest of apples. Therefore, this dissertation is focused on the development of nondestructive methods for the detection and classification of CM-infested apples. The objective one in this study was aimed to identify and characterize the source of detectable vibro-acoustic signals coming from CM-infested apples. A novel approach was developed to correlate the larval activities to low-frequency vibro-acoustic signals, by capturing the larval activities using a digital camera while simultaneously registering the signal patterns observed in the contact piezoelectric sensors on apple surface. While the larva crawling was characterized by the low amplitude and higher frequency (around 4 Hz) signals, the chewing signals had greater amplitude and lower frequency (around 1 Hz). In objective two and three, vibro-acoustic and acoustic impulse methods were developed to classify CM-infested and healthy apples. In the first approach, the identified vibro-acoustic patterns from the infested apples were used for the classification of the CM-infested and healthy signal data. The classification accuracy was as high as 95.94% for 5 s signaling time. For the acoustic impulse method, a knocking test was performed to measure the vibration/acoustic response of the infested apple fruit to a pre-defined impulse in comparison to that of a healthy sample. The classification rate obtained was 99% for a short signaling time of 60-80 ms. In objective four, shortwave near infrared hyperspectral imaging (SWNIR HSI) in the wavelength range of 900-1700 nm was applied to detect CM infestation at the pixel level for the three apple cultivars reaching an accuracy of up to 97.4%. In objective five, the physicochemical characteristics of apples were predicted using HSI method. The results showed the correlation coefficients of prediction (Rp) up to 0.90, 0.93, 0.97, and 0.91 for SSC, firmness, pH and moisture content, respectively. Furthermore, the effect of long-term storage (20 weeks) at three different storage conditions (0 °C, 4 °C, and 10 °C) on CM infestation and the detectability of the infested apples was studied. At a constant storage temperature the detectability of infested samples remained the same for the first three months then improved in the fourth month followed by a decrease until the end of the storage. Finally, a sensor data fusion method was developed which showed an improvement in the classification performance compared to the individual methods. These findings indicated there is a high potential of acoustic and NIR HSI methods for detecting and classifying CM infestation in different apple cultivars

    Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use

    Get PDF
    The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which has been available for two and three decades, respectively, is described. A review of scientific effort is made for the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and validation procedures, and this work is critiqued through comparison to techniques in commercial use, with focus to wavelength region, optical geometry, experimental design, and validation procedures. Recommendations for future research activity in this area are made, e.g., application development with consideration of the distribution of the attribute of interest in the product and the matching of optically sampled and reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz. description of the application, the reference method, the composition of calibration and test populations, chemometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful conclusions from the extensive work being done around the world

    Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables

    Get PDF
    Over the past decade, hyperspectral imaging has been rapidly developing and widely used as an emerging scientific tool in nondestructive fruit and vegetable quality assessment. Hyperspectral imaging technique integrates both the imaging and spectroscopic techniques into one system, and it can acquire a set of monochromatic images at almost continuous hundreds of thousands of wavelengths. Many researches based on spatial image and/or spectral image processing and analysis have been published proposing the use of hyperspectral imaging technique in the field of quality assessment of fruits and vegetables. This chapter presents a detailed overview of the introduction, latest developments and applications of hyperspectral imaging in the nondestructive assessment of fruits and vegetables. Additionally, the principal components, basic theories, and corresponding processing and analytical methods are also reported in this chapter

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow

    Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm

    Get PDF
    Optical measurement of fruit quality is challenging due to the presence of a skin around the fruit flesh and the multiple scattering by the structured tissues. To gain insight in the light-tissue interaction, the optical properties of apple skin and flesh tissue are estimated in the 350-2200nm range for three cultivars. For this purpose, single integrating sphere measurements are combined with inverse adding- doubling. The observed absorption coefficient spectra are dominated by water in the near infrared and by pigments and chlorophyll in the visible region, whose concentrations are much higher in skin tissue. The scattering coefficient spectra show the monotonic decrease with increasing wavelength typical for biological tissues with skin tissue being approximately three times more scattering than flesh tissue. Comparison to the values from time-resolved spectroscopy reported in literature showed comparable profiles for the optical properties, but overestimation of the absorption coefficient values, due to light losses
    • 

    corecore