272 research outputs found

    Radar signal processing for sensing in assisted living: the challenges associated with real-time implementation of emerging algorithms

    Get PDF
    This article covers radar signal processing for sensing in the context of assisted living (AL). This is presented through three example applications: human activity recognition (HAR) for activities of daily living (ADL), respiratory disorders, and sleep stages (SSs) classification. The common challenge of classification is discussed within a framework of measurements/preprocessing, feature extraction, and classification algorithms for supervised learning. Then, the specific challenges of the three applications from a signal processing standpoint are detailed in their specific data processing and ad hoc classification strategies. Here, the focus is on recent trends in the field of activity recognition (multidomain, multimodal, and fusion), health-care applications based on vital signs (superresolution techniques), and comments related to outstanding challenges. Finally, this article explores challenges associated with the real-time implementation of signal processing/classification algorithms

    Radar Sensing in Assisted Living: An Overview

    Get PDF
    This paper gives an overview of trends in radar sensing for assisted living. It focuses on signal processing and classification, looking at conventional approaches, deep learning and fusion techniques. The last section shows examples of classification in human activity recognition and medical applications, e.g. breathing disorder and sleep stages recognition

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    RF Sensing Technologies for Assisted Daily Living in Healthcare: A Comprehensive Review

    Get PDF
    The aim of radio-frequency (RF) sensing for assisted living is to deliver automatic support and monitoring for older people in their homes, impaired patients living independently, individuals in need of continuous support, and people suffering from chronic diseases that require them to stay in care-homes or at hospitals. RF sensing technologies have the potential to improve the quality of living of elderly people or disabled individuals in need of timely assistance. This paper provides a comprehensive review on three of the most innovative RF sensing technologies for activities of daily living in healthcare sector (namely active radar, passive radar, and wireless channel information and RFID sensing) and presents some of the open challenges that need to be addressed

    Enhanced multi-source data analysis for personalized sleep-wake pattern recognition and sleep parameter extraction

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Sleep behavior is traditionally monitored with polysomnography, and sleep stage patterns are a key marker for sleep quality used to detect anomalies and diagnose diseases. With the growing demand for personalized healthcare and the prevalence of the Internet of Things, there is a trend to use everyday technologies for sleep behavior analysis at home, having the potential to eliminate expensive in-hospital monitoring. In this paper, we conceived a multi-source data mining approach to personalized sleep-wake pattern recog-nition which uses physiological data and personal information to facilitate fine-grained detection. Physiological data includes actigraphy and heart rate variability and personal data makes use of gender, health status and race infor-mation which are known influence factors. Moreover, we developed a personal-ized sleep parameter extraction technique fused with the sleep-wake approach, achieving personalized instead of static thresholds for decision-making. Results show that the proposed approach improves the accuracy of sleep and wake stage recognition, therefore, offers a new solution for personalized sleep-based health monitoring

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Video Respiration Monitoring:Towards Remote Apnea Detection in the Clinic

    Get PDF
    corecore