53 research outputs found

    A Resolution Enhancement Technique for Remote Monitoring of the Vital Signs of Multiple Subjects Using a 24 Ghz Bandwidth-Limited FMCW Radar

    Get PDF
    This study proposes a novel signal processing method for detecting the vital signs of multiple adjacent subjects using a 24 GHz frequency modulated continuous wave Doppler radar. Radar-based vital signs sensors have attracted significant attention because of their contactless and unobtrusive mode of measurement. However, limited-bandwidth, fixed-beam systems have been restricted to single subjects because a high resolution is required to detect the vital signs of multiple adjacent subjects. As the range resolution is determined by the frequency bandwidth, a novel method is proposed that doubles the effective frequency bandwidth by using a modified waveform. The proposed method can distinguish between two subjects sitting 40 cm apart, overcoming the 60 cm Rayleigh resolution for a frequency bandwidth of 250 MHz. The computational complexity of the proposed method is considerably low when compared with high-resolution algorithms such as the multiple signal classification algorithm. Furthermore, the method easily suppresses stationary clutter by using phase deviation. To validate the performance of the proposed method, experiments were conducted with two subjects lying side by side on a bed. The results indicate the excellent performance, with enhanced range and high detection accuracy. This method has many potential applications, including monitoring infants and sleep apnea patients.ope

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Noncontact Seismocardiogram Signal Detection Using Microwave Doppler Radar

    Get PDF
    The objective of the research is to achieve non-contact detection of seismocardiogram (SCG), a representation of mechanical heart motion, using microwave Doppler radar system. The increase in demand for health monitoring requires robust, reliable, and accurate remote detection of cardiac signals. Due to its ability to penetrate non-metal obstacles, microwave Doppler radar is promising to provide a non-contact and unobtrusive measurement. In this dissertation, both the hardware system and the signal processing approaches are developed for providing an accurate and reliable measurement of cardiac signals using the microwave Doppler radar. First, a noise suppression scheme and a clutter removal strategy are investigated to improve the performance of a microwave Doppler radar system. Then, an investigation is conducted to demonstrate the effectiveness of using a radar signal to represent SCG, and a standalone method is developed to extract the SCG features from the radar signal without using a contact electrocardiogram (ECG) signal that the conventional methods rely on. With the development of the hardware system and signal processing approaches, the complete non-contact measurement and analysis of cardiac signals can be achieved.Ph.D

    Non-invasive inspections: a review on methods and tools

    Get PDF
    Non-Invasive Inspection (NII) has become a fundamental tool in modern industrial maintenance strategies. Remote and online inspection features keep operators fully aware of the health of industrial assets whilst saving money, lives, production and the environment. This paper conducted crucial research to identify suitable sensing techniques for machine health diagnosis in an NII manner, mainly to detect machine shaft misalignment and gearbox tooth damage for different types of machines, even those installed in a hostile environment, using literature on several sensing tools and techniques. The researched tools are critically reviewed based on the published literature. However, in the absence of a formal definition of NII in the existing literature, we have categorised NII tools and methods into two distinct categories. Later, we describe the use of these tools as contact-based, such as vibration, alternative current (AC), voltage and flux analysis, and non-contact-based, such as laser, imaging, acoustic, thermographic and radar, under each category in detail. The unaddressed issues and challenges are discussed at the end of the paper. The conclusions suggest that one cannot single out an NII technique or method to perform health diagnostics for every machine efficiently. There are limitations with all of the reviewed tools and methods, but good results possible if the machine operational requirements and maintenance needs are considered. It has been noted that the sensors based on radar principles are particularly effective when monitoring assets, but further comprehensive research is required to explore the full potential of these sensors in the context of the NII of machine health. Hence it was identified that the radar sensing technique has excellent features, although it has not been comprehensively employed in machine health diagnosis

    Multi-Layered Flexible Pressure Sensors with Tunable Sensitivity and Linearity

    Get PDF
    Department of Chemical EngineeringTunable sensitivity and linearity of flexible pressure sensors are the critical requirements for various user-friendly customized application such as wearable devices, prosthesis and smart robotics. However, flexible pressure sensors with both high sensitivity and linearity over broad pressure range have been rarely demonstrated. Here, we demonstrate a highly-sensitive and linearly-responsive flexible pressure sensor, which is achieved by multi-layering of PEDOT:PSS/PUD composites with interlocked structures. The multi-layer with different conductivity enables easy regulation of the change of composite resistance in response to the applied pressure. Multi-layered pressure sensors could linearly perceive the pressure over broad working pressure range of 100 kPa with the sensitivity of 3.1 x105 kPa-1, which is the highest one among the pressure sensors reported so far. In addition, it shows a rapid response time of 130 ms and relaxation time of 13 ms and high durability over 5000 repetitive cycles under the pressure of 20 kPa. Owing to the high sensitivity, it can discriminate weak gas flow with different air density, delicate hand manipulation of objects and different pulse rate of carotid artery and internal jugular vein.clos

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    CMOS and MEMS Based Microsystems for Manipulation and Detection of Magnetic Beads for Biomedical Applications

    Get PDF
    RÉSUMÉ Les micro et nano billes magnétiques dédiées à l'étiquetage des bio-particules attirent de plus en plus d'intérêt dans de nombreuses applications environnementales et sanitaires, tels que l'analyse de gènes, le transport des médicaments, la purification et l'immunologie. Les dimensions réduites et la haute sensibilité des billes magnétiques rendent leurs manipulations à haute précision possibles. Leur simplicité de suivi dans le milieu biologique et leur biocompatibilité permettent d’effectuer des détections rapides et à haute sensibilité pour des applications in vivo et in vitro. L'utilisation traditionnelle des billes magnétiques prend place dans un laboratoire se servant du matériel encombrant et dispendieux. Avec le développement de la technologie de microfabrication, des billes magnétiques peuvent être traitées dans un microsystème, plus précisément, dans une structure laboratoire sur puce (LoC). La combinaison microfluidique et microélectronique offre des possibilités d’autoévaluation, ce qui peut augmenter l'efficacité du travail. Cette thèse est orientée vers de nouvelles approches pour la manipulation et la détection de bio-particules se servant de la technologie de microsystèmes basées sur des structures microelectroniques et microfluidiques et en utilisant des marqueurs de billes magnétiques. Basé sur un réseau de microbobines à la fois comme une source de champ magnétique et un capteur inductif, le microsystème proposé est réalisé grâce à l'efficacité de fabrication de structures CMOS-MEMS, ainsi que des circuits intégrés dédiés CMOS de haute performance afin d'obtenir un rendement élevé de manipulation et de détection de billes magnétiques. Plusieurs défis ont été analysés dans la mise en œuvre de ces microsystèmes et des solutions correspondantes fournies. Plus précisément, la conception et la mise en œuvre d'une plate-forme contrôlée en température en format portable sont d'abord présentées, dans un effort réalisé pour résoudre la question de la chaleur par effet Joule lors de l'application du réseau de microbobines comme une source de champ magnétique dédié à la manipulation de billes magnétiques. Une plateforme similaire à cette dernière a été améliorée pour effectuer une analyse magnétique immunologique, en ajoutant des circuits de détection par des billes magnétiques. De plus, des IgG et anti-IgG de souris ont été utilisés dans des expériences pour vérifier les performances de détection de la plateforme de microsystème proposé.----------ABSTRACT Magnetic micro/nano beads as labels of bio-particles have been attracting more and more interest in many environmental and health applications, such as gene and drug delivery, purification, and immunoassay. The miniature size and high sensitivity of magnetic bead allow accurate manipulation, whereas its high distinguishability from biological background and biocompatibility make fast and high sensitivity detection possible for in vitro and in vivo applications. Traditional employment of magnetic beads is done in laboratory environment with the assist of bulky and expensive equipment. Thanks to the development of microfabrication technology, magnetic beads therefore can be handled on a microsystem, more specifically, a Lab-on-Chip (LoC). The combination of microfluidics with microelectronics offers the possibility of automatic analyses, which can liberate the labor and increase the efficiency.This thesis focuses on new approaches for bio-particles manipulation and detection on microelectronic/microfluidic hybrid microsystems using magnetic beads as labels. Based on planar microcoil array as both magnetic field source and the front-end inductive sensor, the proposed microsystems can take advantage of the massive producible CMOS/MEMS fabrication process, as well as the customized high performance CMOS circuits, to achieve a high efficient magnetic beads manipulation and a quantitative detection. Several challenges in implementing such microsystems are analyzed and corresponding solutions are provided. Specifically, the design and implementation of a temperature controllable LoC platform in portable format is firstly presented, for the sake of resolving the Joule heat issue when applying microcoil array as magnetic field source in magnetic beads manipulation. The similar platform is then improved to be used for magnetic immunoassay, by adding magnetic beads sensing circuits. Mouse IgG and anti-mouse IgG are employed in experiments to verify the detection performance of the proposed microsystem platform. Additionally, a fully integrated silicon substrate MEMS chip which integrates both microfluidic channel and microcoil array on a single chip is designed and fabricated following the Finite Element Analysis (FEA) simulation results and tested using bio-particles attached magnetic beads. This monolithic chip has the potential to be applied for in vivo applications

    Design, manufacturing and characterisation of a wireless flexible pressure sensor system for the monitoring of the gastro-intestinal tract

    Get PDF
    Ingestible motility capsule (IMC) endoscopy holds a strong potential in providing advanced diagnostic capabilities within the small intestine with higher patient tolerance for pathologies such as irritable bowel syndrome, gastroparesis and chronic abdominal amongst others. Currently state-of-the art IMCs are limited by the use of obstructive off-the-shelf sensing modules that are unable to provide multi-site tactile monitoring of the Gastro-Intestinal tract. In this work a novel 12 mm in diameter by 30 mm in length IMC is presented that utilises custom-built flexible, thin-film, biocompatible, wireless and highly sensitive tactile pressure sensors arrays functionalising the capsule shell. The 150 μm thick, microstructured, PDMS flexible passive pressure sensors are wirelessly powered and interrogated, and are capable of detecting pressure values ranging from 0.1 kPa up to 30 kPa with a 0.1 kPa resolution. A novel bottom-up wafer-scale microfabrication process is presented which enables the development of these ultra-dense, self-aligned, scalable and uniquely addressable flexible wireless sensors with high yield (>80%). This thesis also presents an innovative metallisation microfabrication process on soft-elastomeric substrates capable to withstand without failure of the tracks 180o bending, folding and iterative deformation such as to allow conformable mapping of these sensors. A custom-built and low-cost reflectometer system was also designed, built and tested within the capsule that can provide a fast (100 ms) and accurate extraction (±0.1 kPa) of their response. In vitro and in vivo characterisation of the developed IMC device is also presented, facilitated respectively via the use of a biomimetic phantom gut and via live porcine subjects. The capsule device was found to successfully capture respiration, low-amplitude and peristaltic motility of the GI tract from multiple sites of the capsule.UK Engineering & Physical Sciences Research Council (EPSRC) through the Programme Grant Sonopill (EP/K034537/2)James Watt Scholarshi
    corecore