79 research outputs found

    Radar Sensing in Assisted Living: An Overview

    Get PDF
    This paper gives an overview of trends in radar sensing for assisted living. It focuses on signal processing and classification, looking at conventional approaches, deep learning and fusion techniques. The last section shows examples of classification in human activity recognition and medical applications, e.g. breathing disorder and sleep stages recognition

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Bio-Radar: sistema de aquisição de sinais vitais sem contacto

    Get PDF
    The Bio-Radar system is capable to measure vital signs accurately, namely the respiratory and cardiac signal, using electromagnetic waves. In this way, it is possible to monitor subjects remotely and comfortably for long periods of time. This system is based on the micro-Doppler effect, which relates the received signal phase variation with the distance change between the subject chest-wall and the radar antennas, which occurs due to the cardiopulmonary function. Considering the variety of applications where this system can be used, it is required to evaluate its performance when applied to real context scenarios and thus demonstrate the advantages that bioradar systems can bring to the general population. In this work, a bio-radar prototype was developed in order to verify the viability to be integrated in specific applications, using robust and low profile solutions that equally guarantee the general system performance while addressing the market needs. Considering these two perspectives to be improved, different level solutions were developed. On the hardware side, textile antennas were developed to be embedded in a car seat upholstery, thus reaching a low profile solution and easy to include in the industrialization process. Real context scenarios imply long-term monitoring periods, where involuntary body motion can occur producing high amplitude signals that overshadow the vital signs. Non-controlled monitoring environments might also produce time varying parasitic reflections that have a direct impact in the signal. Additionally, the subject's physical stature and posture during the monitoring period can have a different impact in the signals quality. Therefore, signal processing algorithms were developed to be robust to low quality signals and non-static scenarios. On the other hand, the bio-radar potential can also be maximized if the acquired signals are used pertinently to help identify the subject's psychophysiological state enabling one to act accordingly. The random body motion until now has been seen as a noisy source, however it can also provide useful information regarding subject's state. In this sense, the acquired vital signs as well as other body motions were used in machine learning algorithms with the goal to identify the subject's emotions and thus verify if the remotely acquired vital signs can also provide useful information.O sistema Bio-Radar permite medir sinais vitais com precisão, nomeadamente o sinal respiratório e cardíaco, utilizando ondas eletromagnéticas para esse fim. Desta forma, é possível monitorizar sujeitos de forma remota e confortável durante longos períodos de tempo. Este sistema é baseado no efeito de micro-Doppler, que relaciona a variação de fase do sinal recebido com a alteração da distância entre as antenas do radar e a caixa torácica do sujeito, que ocorre durante a função cardiopulmonar. Considerando a variedade de aplicações onde este sistema pode ser utilizado, é necessário avaliar o seu desempenho quando aplicado em contextos reais e assim demonstrar as vantagens que os sistemas bio-radar podem trazer à população geral. Neste trabalho, foi desenvolvido um protótipo do bio radar com o objetivo de verificar a viabilidade de integrar estes sistemas em aplicações específicas, utilizando soluções robustas e discretas que garantam igualmente o seu bom desempenho, indo simultaneamente de encontro às necessidades do mercado. Considerando estas duas perspetivas em que o sistema pode ser melhorado, foram desenvolvidas soluções de diferentes níveis. Do ponto de vista de hardware, foram desenvolvidas antenas têxteis para serem integradas no estofo de um banco automóvel, alcançando uma solução discreta e fácil de incluir num processo de industrialização. Contextos reais de aplicação implicam períodos de monitorização longos, onde podem ocorrer movimentos corporais involuntários que produzem sinais de elevada amplitude que se sobrepõem aos sinais vitais. Ambientes de monitorização não controlados podem produzir reflexões parasitas variantes no tempo que têm impacto direto no sinal. Adicionalmente, a estrutura física do sujeito e a sua postura durante o período de monitorização podem ter impactos diferentes na qualidade dos sinais. Desta forma, foram desenvolvidos algoritmos de processamento de sinal robustos a sinais de baixa qualidade e a cenários não estáticos. Por outro lado, o potencial do bio radar pode também ser maximizado se os sinais adquiridos forem pertinentemente utilizados de forma a ajudar a identificar o estado psicofisiológico do sujeito, permitindo mais tarde agir em conformidade. O movimento corporal aleatório que foi até agora visto como uma fonte de ruído, pode no entanto também fornecer informação útil sobre o estado do sujeito. Neste sentido, os sinais vitais e outros movimentos corporais adquiridos foram utilizados em algoritmos de aprendizagem automática com o objetivo de identificar as emoções do sujeito e assim verificar que sinais vitais adquiridos remotamente podem também conter informação útil.Programa Doutoral em Engenharia Eletrotécnic

    Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review

    Full text link
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage.</jats:p
    corecore