28 research outputs found

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Position-Free Vital Sign Monitoring: Measurements and Processing

    Get PDF
    As traditional electrodes are perturbing for patients in critical cases such as for burn victims or newborn infants, and even to detect life sign under rubble, a contactless monitoring system for the life signs is a necessity. The aim of this chapter is to present a complete process used in detecting cardiopulmonary activities. This includes a microwave Doppler radar system that detects the body wall motion and signal processing techniques in order to extract the heartbeat rate. Measurements are performed at different positions simultaneously with a PC-based electrocardiogram (ECG). For a distance of 1 m between the subject and the antennas, measurements are performed for breathing subject at four positions: front, back, left, and right. Discrete wavelet transform is used to extract the heartbeat signal from the cardiopulmonary signal. The proposed system and signal processing techniques show high accuracy in detecting the cardiopulmonary signals and extracting the heartbeat rate

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review

    Full text link
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage.</jats:p
    corecore