647 research outputs found

    DSSY λΉ„μˆœμ‘μœ ν•œμš”μ†Œμ™€ λ©€ν‹°μŠ€μΌ€μΌ 방법에 λŒ€ν•œ 적용

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ μˆ˜λ¦¬κ³Όν•™λΆ€,2020. 2. μ‹ λ™μš°.We first consider nonparametric DSSY nonconforming quadrilateral element introduced. The element satisfies the mean value property on each edge and shows optimal convergence for second-order elliptic problems. We estimate the effect of numerical integration on finite element method and construct new quadrature formula for DSSY element. It is shown that only three nodes are enough to get optimal convergence for second-order elliptic problems. Numerical results are presented to compare new quadrature formula with usual Gaussian quadrature rules. Next we study the nonconforming generalized multiscale finite element method(GMsFEM). The framework of GMsFEM is organized and every process of constructing nonconforming GMsFE spaces is presented in detail. GMsFE spaces consist of two ingredient. First one is the offline function space, a spectral decomposition of the snapshot space which is used to approximate the solution. Other one is the moment function space, which is used to impose continuity between local offline function spaces. Numerical results are presented based on nonparametric DSSY nonconforming element. In last chapter, an algebraic multiscale finite element method is investigated. Suppose that the coefficient and the source term of second-order elliptic problems are not available, and we only know the microscale linear system. We try to construct macroscale linear systems only using the algebraic information on the components of microscale systems. One-dimensional case is examined in detail following GMsFEM framework, and two dimensional case is also presented using the DSSY nonconforming finite element space.λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” 일반적인 μ‚¬κ°ν˜•μ—μ„œ μ •μ˜λ˜λŠ” λΉ„λͺ¨μˆ˜μ  DSSY λΉ„μˆœμ‘μœ ν•œμš”μ†Œκ³΅κ°„μ„ κ³ λ €ν•œλ‹€. 1μž₯μ—μ„œλŠ” μœ ν•œμš”μ†Œλ²•μ„ μ΄μš©ν•΄ 이차 νƒ€μ›ν˜• 문제λ₯Ό ν•΄κ²°ν•  λ•Œ 수치 적뢄법이 ν•΄μ˜ μˆ˜λ ΄μ†λ„μ— μž‘μš©ν•˜λŠ” 효과λ₯Ό λΆ„μ„ν•œλ‹€. 졜적의 수렴 속도λ₯Ό λ³€ν™”μ‹œν‚€μ§€ μ•ŠλŠ” 수치 μ λΆ„λ²•μ˜ μΆ©λΆ„ 쑰건을 κ΅¬ν•˜κ³ , 이λ₯Ό μ΄μš©ν•΄ DSSY μœ ν•œμš”μ†Œμ— μ ν•©ν•œ μƒˆλ‘œμš΄ ꡬ적법 곡식을 κ³ μ•ˆν•œλ‹€. 단 3개의 μ λ§Œμ„ μ΄μš©ν•΄ 졜적의 수렴 속도λ₯Ό 얻을 수 μžˆμŒμ„ 보이고 λ‹€μ–‘ν•œ 수치적 결과듀을 μ œμ‹œν•œλ‹€. 2μž₯μ—μ„œλŠ” λΉ„λͺ¨μˆ˜μ  DSSY λΉ„μˆœμ‘μœ ν•œμš”μ†Œκ³΅κ°„μ„ μ μš©ν•œ μΌλ°˜ν™”λœ λ©€ν‹°μŠ€μΌ€μΌ λΉ„μˆœμ‘μœ ν•œμš”μ†Œλ²•μ„ μ—°κ΅¬ν•œλ‹€. μΌλ°˜ν™”λœ λ©€ν‹°μŠ€μΌ€μΌ μœ ν•œμš”μ†Œκ³΅κ°„μ€ 두 개의 ν•¨μˆ˜κ³΅κ°„μœΌλ‘œ κ΅¬μ„±λœλ‹€. 첫 λ²ˆμ§ΈλŠ” offline ν•¨μˆ˜κ³΅κ°„μœΌλ‘œ κ΅­μ†Œμ  μ‘°ν™” 문제λ₯Ό ν’€μ–΄ μ–»μ–΄μ§€λŠ” snapshot ν•¨μˆ˜κ³΅κ°„μ— μŠ€νŽ™νŠΈλŸΌ λΆ„ν•΄λ₯Ό μ μš©ν•˜μ—¬ 얻어진닀. 두 λ²ˆμ§ΈλŠ” moment ν•¨μˆ˜κ³΅κ°„μœΌλ‘œ κ΅­μ†Œμ μœΌλ‘œ 얻어진 offline ν•¨μˆ˜λ“€ κ°„μ˜ 연속성을 λΆ€μ—¬ν•˜λŠ” 데 μ΄μš©λœλ‹€. μ΄λŸ¬ν•œ λ…Όμ˜μ™€ ν•¨κ»˜ 1μž₯μ—μ„œ κ³ μ•ˆν•œ ꡬ적법 곡식을 μ μš©ν•œ 수치적 결과듀을 μ œμ‹œν•œλ‹€. 3μž₯μ—μ„œλŠ” λŒ€μˆ˜μ  λ©€ν‹°μŠ€μΌ€μΌ 방법을 μ†Œκ°œν•œλ‹€. 이차 νƒ€μ›ν˜• 문제의 κ³„μˆ˜μ™€ μ†ŒμŠ€ 항을 λͺ¨λ₯΄λŠ” μƒνƒœμ—μ„œ 단지 λ―Έμ‹œμ  μŠ€μΌ€μΌμ˜ μ„ ν˜• μ‹œμŠ€ν…œλ§Œ μ•Œκ³  μžˆμ„ λ•Œ, 이 μ‹œμŠ€ν…œμ˜ ꡬ성 성뢄에 λŒ€ν•œ λŒ€μˆ˜μ  μ •λ³΄λ§Œμ„ λ°”νƒ•μœΌλ‘œ κ±°μ‹œμ  μŠ€μΌ€μΌμ˜ μ„ ν˜• μ‹œμŠ€ν…œμ„ κ±΄μ„€ν•œλ‹€. λ¨Όμ € 일차원 문제λ₯Ό ꡬ체적으둜 λΆ„μ„ν•˜κ³  이차원 문제λ₯Ό μΌλ°˜ν™”λœ λ©€ν‹°μŠ€μΌ€μΌ λΉ„μˆœμ‘μœ ν•œμš”μ†Œλ²•μ„ μ΄μš©ν•˜μ—¬ μ—°κ΅¬ν•œλ‹€. 수치적 결과듀을 보여쀀닀.Chapter 1. Nonparametric DSSY Nonconforming Quadrilateral Element 1 1.1 Introduction 1 1.2 Quadrilateral nonconforming elements 2 1.2.1 The Rannacher-Turek element and the DSSY element 3 1.2.2 Nonparametric DSSY quadrilateral element 4 1.3 A new intermediate space KΛ‰\bar{K} for nonparametric DSSY element 9 1.3.1 The Meng et al. approach 9 1.3.2 A class of nonparametric DSSY elements on KΛ‰\bar{K} 12 1.4 Construction of quadrature formula 17 1.4.1 Effect of numerical integration on FEM 17 1.4.2 Quadrature formula on KΛ‰\bar{K} 28 1.5 Numerical results 32 Chapter 2 Nonconforming Generalized Multiscale Finite Element Method 39 2.1 Introduction 39 2.2 Framework of nonconforming generalized multiscale finite element methods 40 2.2.1 Preliminaries 40 2.2.2 Framework of nonconforming GMsFEM 42 2.3 Construction of multiscale finite element spaces 43 2.3.1 Snapshot function space VsnapV^{\text{snap}} 44 2.3.2 Offline function space VoffV^{\text{off}} 45 2.3.3 Moment function space MH\mathcal{M}_H 46 2.3.4 Nonconforming GMsFE spaces VHV^H and VH,0V^{H,0} 48 2.4 Error analysis 50 2.5 Numerical results 52 Chapter 3 Algebraic Multiscale Method 57 3.1 Introduction 57 3.2 Preliminaries 59 3.3 Algebraic Multiscale Method 64 3.3.1 Algebraic formulation of stiffness matrix 64 3.3.2 Multiscale solution 70 3.4 Error analysis 70 3.5 Numerical results 73 3.5.1 Known Coefficient Case 73 3.5.2 Random Coefficient Case 75 3.6 2D case 82 3.6.1 Implementation of the DSSY nonconforming element 83 3.6.2 Construction of multiscale finite element spaces 89 3.6.3 Numerical results 92 κ΅­λ¬Έ 초둝 103Docto

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    Generalized Multiscale Finite Element Methods for problems in perforated heterogeneous domains

    Get PDF
    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales (see Figure 1 for the illustration of a perforated domain). Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works [14, 18, 17], where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domain; (2) elasticity equation in perforated domain; and (3) Stokes equations in perforated domain. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere
    • …
    corecore