74 research outputs found

    Precise tip positioning of a flexible manipulator using resonant control

    Get PDF
    A single-link flexible manipulator is fabricated to represent a typical flexible robotic arm. This flexible manipulator is modeled as a SIMO system with the motor-torque as the input and the hub angle and the tip position as the outputs. The two transfer functions are identified using a frequency-domain system identification method. A feedback loop around the hub angle response with a resonant controller is designed to damp the resonant modes. A high gain integral controller is also designed to achieve zero steady-state error in the tip position response. Experiments are performed to demonstrate the effectiveness of the proposed control scheme

    Precise tip positioning of a flexible manipulator using resonant control

    Get PDF
    A single-link flexible manipulator is fabricated to represent a typical flexible robotic arm. This flexible manipulator is modeled as an SIMO system with the motor torque as the input and the hub angle and the tip position as the outputs. The two transfer functions are identified using a frequency-domain system identification method, and the resonant modes are determined. A feedback loop around the hub angle response with a resonant controller is designed to damp the resonant modes. A high-gain integral controller is also implemented to achieve zero steady-state error in the tip position response. Experiments are performed to demonstrate the effectiveness of the proposed control scheme

    Manipulation strategies for massive space payloads

    Get PDF
    The industrial and environmental applications for robots with a relatively large workspace has increased significantly in the last few years. To accommodate the demands, the manipulator is usually designed with long, lightweight links that are inherently flexible. Ongoing research at Georgia Tech into the behavior and design of these flexible links is discussed

    Noncollocated proprioceptive sensing for lightweight flexible robotic manipulators

    Get PDF
    This article presents the design of a noncollocated feedback system for flexible serial manipulators. The device is a passive serial chain of encoders and lightweight links, mounted in parallel with the manipulator. This measuring arm effectively decouples the manipulator's proprioception from its actuators by providing information on the actual end effector pose, accounting for both joint and link flexibility. The kinematic redundancy of the measuring chain allows for safe operation in the context of human–robot interaction. A simple yet effective error model is introduced to assess the suitability of the proposed sensor system in the context of robotic control. The practicality of the device is first demonstrated by building a physical joint-encoder assembly and a simplified planar measuring arm prototype. With this additional feedback, a task-space position controller is devised and tested in simulation. Finally, the simulation results are validated with an experimental 3-DoF lightweight manipulator prototype equipped with a five-joint measuring arm

    Eliminating stick-slip vibrations in drill-strings with a dual-loop control strategy optimized by the CRO-SL algorithm

    Get PDF
    Funding: This work was partially supported by the Spanish Ministerial Commission of Science and Technology (MICYT) through project number TIN2017-85887-C2-2-P Acknowledgments: The authors would like to thank Marian Wiercigroch and Vahid Vaziri from the Centre for Applied Dynamics Research, University of Aberdeen, for providing the realistic drill-string parameters used in this work.Peer reviewedPublisher PD

    Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    Get PDF
    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area
    corecore