8 research outputs found

    Lightweight MPI Communicators with Applications to Perfectly Balanced Quicksort

    Get PDF
    MPI uses the concept of communicators to connect groups of processes. It provides nonblocking collective operations on communicators to overlap communication and computation. Flexible algorithms demand flexible communicators. E.g., a process can work on different subproblems within different process groups simultaneously, new process groups can be created, or the members of a process group can change. Depending on the number of communicators, the time for communicator creation can drastically increase the running time of the algorithm. Furthermore, a new communicator synchronizes all processes as communicator creation routines are blocking collective operations. We present RBC, a communication library based on MPI, that creates range-based communicators in constant time without communication. These RBC communicators support (non)blocking point-to-point communication as well as (non)blocking collective operations. Our experiments show that the library reduces the time to create a new communicator by a factor of more than 400 whereas the running time of collective operations remains about the same. We propose Janus Quicksort, a distributed sorting algorithm that avoids any load imbalances. We improved the performance of this algorithm by a factor of 15 for moderate inputs by using RBC communicators. Finally, we discuss different approaches to bring nonblocking (local) communicator creation of lightweight (range-based) communicators into MPI

    Fault-Aware Non-Collective Communication Creation and Reparation in MPI

    Full text link
    The increasing size of HPC architectures makes the faults' presence a more and more frequent eventuality. This issue becomes especially relevant since MPI, the de-facto standard for inter-process communication, lacks proper fault management functionalities. Past efforts produced extensions to the MPI standard that enabled fault management, including ULFM. While providing powerful tools to handle faults, it still faces limitations like the collectiveness of the repair procedure. With this paper, we overcome those limitations and achieve fault-aware non-collective communicator creation and reparation. We integrate our solution into an existing fault resiliency framework and measure the overhead introduced in the application code. The experimental campaign shows that our solution is scalable and introduces a limited overhead, and the non-collective reparation is a viable opportunity for ULFM-based applications

    Massively Parallel "Schizophrenic" Quicksort

    Get PDF

    Robust Scalable Sorting

    Get PDF
    Sortieren ist eines der wichtigsten algorithmischen Grundlagenprobleme. Es ist daher nicht verwunderlich, dass Sortieralgorithmen in einer Vielzahl von Anwendungen benötigt werden. Diese Anwendungen werden auf den unterschiedlichsten Geräten ausgeführt -- angefangen bei Smartphones mit leistungseffizienten Multi-Core-Prozessoren bis hin zu Supercomputern mit Tausenden von Maschinen, die über ein Hochleistungsnetzwerk miteinander verbunden sind. Spätestens seitdem die Single-Core-Leistung nicht mehr signifikant steigt, sind parallele Anwendungen in unserem Alltag nicht mehr wegzudenken. Daher sind effiziente und skalierbare Algorithmen essentiell, um diese immense Verfügbarkeit von (paralleler) Rechenleistung auszunutzen. Diese Arbeit befasst sich damit, wie sequentielle und parallele Sortieralgorithmen auf möglichst robuste Art maximale Leistung erzielen können. Dabei betrachten wir einen großen Parameterbereich von Eingabegrößen, Eingabeverteilungen, Maschinen sowie Datentypen. Im ersten Teil dieser Arbeit untersuchen wir sowohl sequentielles Sortieren als auch paralleles Sortieren auf Shared-Memory-Maschinen. Wir präsentieren In-place Parallel Super Scalar Samplesort (IPS⁴o), einen neuen vergleichsbasierten Algorithmus, der mit beschränkt viel Zusatzspeicher auskommt (die sogenannte „in-place” Eigenschaft). Eine wesentliche Erkenntnis ist, dass unsere in-place-Technik die Sortiergeschwindigkeit von IPS⁴o im Vergleich zu ähnlichen Algorithmen ohne in-place-Eigenschaft verbessert. Bisher wurde die Eigenschaft, mit beschränkt viel Zusatzspeicher auszukommen, eher mit Leistungseinbußen verbunden. IPS⁴o ist außerdem cache-effizient und führt O(n/tlogn)O(n/t\log n) Arbeitsschritte pro Thread aus, um ein Array der Größe nn mit tt Threads zu sortieren. Zusätzlich berücksichtigt IPS⁴o Speicherlokalität, nutzt einen Entscheidungsbaum ohne Sprungvorhersagen und verwendet spezielle Partitionen für Elemente mit gleichem Schlüssel. Für den Spezialfall, dass ausschließlich ganzzahlige Schlüssel sortiert werden sollen, haben wir das algorithmische Konzept von IPS⁴o wiederverwendet, um In-place Parallel Super Scalar Radix Sort (IPS²Ra) zu implementieren. Wir bestätigen die Performance unserer Algorithmen in einer umfangreichen experimentellen Studie mit 21 State-of-the-Art-Sortieralgorithmen, sechs Datentypen, zehn Eingabeverteilungen, vier Maschinen, vier Speicherzuordnungsstrategien und Eingabegrößen, die über sieben Größenordnungen variieren. Einerseits zeigt die Studie die robuste Leistungsfähigkeit unserer Algorithmen. Andererseits deckt sie auf, dass viele konkurrierende Algorithmen Performance-Probleme haben: Mit IPS⁴o erhalten wir einen robusten vergleichsbasierten Sortieralgorithmus, der andere parallele in-place vergleichsbasierte Sortieralgorithmen fast um den Faktor drei übertrifft. In der überwiegenden Mehrheit der Fälle ist IPS⁴o der schnellste vergleichsbasierte Algorithmus. Dabei ist es nicht von Bedeutung, ob wir IPS⁴o mit Algorithmen vergleichen, die mit beschränkt viel Zusatzspeicher auskommen, Zusatzspeicher in der Größenordnung der Eingabe benötigen, und parallel oder sequentiell ausgeführt werden. IPS⁴o übertrifft in vielen Fällen sogar konkurrierende Implementierungen von Integer-Sortieralgorithmen. Die verbleibenden Fälle umfassen hauptsächlich gleichmäßig verteilte Eingaben und Eingaben mit Schlüsseln, die nur wenige Bits enthalten. Diese Eingaben sind in der Regel „einfach” für Integer-Sortieralgorithmen. Unser Integer-Sorter IPS²Ra übertrifft andere Integer-Sortieralgorithmen für diese Eingaben in der überwiegenden Mehrheit der Fälle. Ausnahmen sind einige sehr kleine Eingaben, für die die meisten Algorithmen sehr ineffizient sind. Allerdings sind Algorithmen, die auf diese Eingabegrößen abzielen, in der Regel für alle anderen Eingaben deutlich langsamer. Im zweiten Teil dieser Arbeit untersuchen wir skalierbare Sortieralgorithmen für verteilte Systeme, welche robust in Hinblick auf die Eingabegröße, häufig vorkommende Sortierschlüssel, die Verteilung der Sortierschlüssel auf die Prozessoren und die Anzahl an Prozessoren sind. Das Resultat unserer Arbeit sind im Wesentlichen vier robuste skalierbare Sortieralgorithmen, mit denen wir den gesamten Bereich an Eingabegrößen abdecken können. Drei dieser vier Algorithmen sind neue, schnelle Algorithmen, welche so implementiert sind, dass sie nur einen geringen Zusatzaufwand benötigen und gleichzeitig unabhängig von „schwierigen” Eingaben robust skalieren. Es handelt sich z.B. um „schwierige” Eingaben, wenn viele gleiche Elemente vorkommen oder die Eingabeelemente in Hinblick auf ihre Sortierschlüssel ungünstig auf die Prozessoren verteilt sind. Bisherige Algorithmen für mittlere und größere Eingabegrößen weisen ein unzumutbar großes Kommunikationsvolumen auf oder tauschen unverhältnismäßig oft Nachrichten aus. Für diese Eingabegrößen beschreiben wir eine robuste, mehrstufige Verallgemeinerung von Samplesort, die einen brauchbaren Kompromiss zwischen dem Kommunikationsvolumen und der Anzahl ausgetauschter Nachrichten darstellt. Wir überwinden diese bisher unvereinbaren Ziele mittels einer skalierbaren approximativen Splitterauswahl sowie eines neuen Datenumverteilungsalgorithmus. Als eine Alternative stellen wir eine Verallgemeinerung von Mergesort vor, welche den Vorteil von perfekt ausbalancierter Ausgabe hat. Für kleine Eingaben entwerfen wir eine Variante von Quicksort. Mit wenig Zusatzaufwand vermeidet sie das Problem ungünstiger Elementverteilungen und häufig vorkommender Sortierschlüssel, indem sie schnell qualitativ hochwertige Splitter auswählt, die Elemente zufällig den Prozessoren zuweist und einer Duplikat-Behandlung unterzieht. Bisherige praktische Ansätze mit polylogarithmischer Latenz haben entweder einen logarithmischen Faktor mehr Kommunikationsvolumen oder berücksichtigen nur gleichverteilte Eingaben ohne mehrfach vorkommende Sortierschlüssel. Für sehr kleine Eingaben schlagen wir einen einfachen sowie schnellen, jedoch arbeitsineffizienten Algorithmus mit logarithmischer Latenzzeit vor. Für diese Eingaben sind bisherige effiziente Ansätze nur theoretische Algorithmen, die meist unverhältnismäßig große konstante Faktoren haben. Für die kleinsten Eingaben empfehlen wir die Daten zu sortieren, während sie an einen einzelnen Prozessor geschickt werden. Ein wichtiger Beitrag dieser Arbeit zu der praktischen Seite von Algorithm Engineering ist die Kommunikationsbibliothek RangeBasedComm (RBC). Mit RBC ermöglichen wir eine effiziente Umsetzung von rekursiven Algorithmen mit sublinearer Laufzeit, indem sie skalierbare und effiziente Kommunikationsfunktionen für Teilmengen von Prozessoren bereitstellt. Zuletzt präsentieren wir eine umfangreiche experimentelle Studie auf zwei Supercomputern mit bis zu 262144 Prozessorkernen, elf Algorithmen, zehn Eingabeverteilungen und Eingabegrößen variierend über neun Größenordnungen. Mit Ausnahme von den größten Eingabegrößen ist diese Arbeit die einzige, die überhaupt Sortierexperimente auf Maschinen dieser Größe durchführt. Die RBC-Bibliothek beschleunigt die Algorithmen teilweise drastisch – einen konkurrierenden Algorithmus sogar um mehr als zwei Größenordnungen. Die Studie legt dar, dass unsere Algorithmen robust sind und gleichzeitig konkurrierende Implementierungen leistungsmäßig deutlich übertreffen. Die Konkurrenten, die man normalerweise betrachtet hätte, stürzen bei „schwierigen” Eingaben sogar ab

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Full text link

    Scientific Programming and Computer Architecture

    Get PDF
    A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer.What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text

    Noncollective Communicator Creation in MPI

    No full text
    corecore