32 research outputs found

    BER performance analysis of multistage PIC scheme in asynchronous DS-CDMA system over unbalanced multipath fading channels

    Get PDF
    In this paper, we provide a theoretical evaluation for the multistage parallel interference cancellation (PIC) scheme in a DS-CDMA system with orthogonal modulation and long scrambling codes. The studied system operates on the reverse link in a time-varying multipath Rayleigh fading channel. Unequal powers are assumed among different paths, which is usually the case in practical situations. The proposed analysis gives insight into the performance and capacity one can expect from the PIC based receivers under different situation

    Fast frequency-hopping dynamic multiple-access for cognitive radios: Suboptimum noncoherent maximum-likelihood multiuser detection

    Full text link
    We propose a novel dynamic multiple-access (DMA) scheme for application in cognitive radios (CRs). This DMA scheme is implemented by fast frequency hopping with MM-ary frequency-shift keying (FFH/MFSK) associated with suboptimum noncoherent maximum-likelihood multiuser detection (ML-MUD). In our studies, we assume that the primary users (PUs) and the cognitive radio users (CRUs) are operated in the interweave paradigm. The PUs activate to communicate according to a Poisson process and the duration of an activation obeys exponential distribution. The bit error rate (BER) and throughput performance of the dynamic FFH/MFSK systems are investigated by simulations, when assuming communications over Rayleigh fading channels. Our studies and simulation results demonstrate that the dynamic FFH/MFSK with suboptimum noncoherent ML-MUD constitutes one of the promising candidates for DMA in CRs. It has low-complexity and employs high-flexibility for DMA and seamless transition between different frequency bands

    Iterative receiver in multiuser relaying systems with fast frequency-hopping modulation

    Get PDF
    In this thesis, a novel iterative receiver and its improved version are proposed for relay-assisted multiuser communications, in which multiple users transmit to a destination with the help of a relay and using fast frequency-hopping modulation. Each user employs a channel encoder to protect its information and facilitate interference cancellation at the receiver. The signal received at the relay is either amplified, or partially decoded with a simple energy detector, before being forwarded to the destination. Under flat Rayleigh fading channels, the receiver at the destination can be implemented non-coherently, i.e., it does not require the instantaneous channel information to demodulate the users’ transmitted signals. The proposed iterative algorithm at the destination exploits the soft outputs of the channel decoders to successively extract the maximum likelihood symbols of the users and perform interference cancellation. The iterative method is successfully applied for both cases of amplify-and-forward and partial decode-and-forward relaying. The error performance of the proposed iterative receiver is investigated by computer simulation. Under the same spectral efficiency, simulation results demonstrate the excellent performance of the proposed receiver when compared to the performance of decoding without interference cancellation as well as the performance of the maximum likelihood multiuser detection previously developed for uncoded transmission. Simulation results also suggest that a proper selection of channel coding schemes can help to support significant more users without consuming extra system resources. In addition, to further enhance the receiver’s performance in terms of the bit error rate, an improved version of the iterative receiver is presented. Such an improved receiver invokes inner-loop iterations between the channel decoders and the demappers in such a way that the soft outputs of the channel decoders are also used to refine the outputs of the demappers for every outer-loop iteration. Simulation results indicate a performance gain of about 2.5dB by using the two-loop receiver when compared to the performance of the first proposed receiver

    Antenna Diversity for a Narrow-Band Successive-Cancellation Multiuser Detector

    Full text link

    Code design based on metric-spectrum and applications

    Get PDF
    We introduced nested search methods to design (n, k) block codes for arbitrary channels by optimizing an appropriate metric spectrum in each iteration. For a given k, the methods start with a good high rate code, say k/(k + 1), and successively design lower rate codes up to rate k/2^k corresponding to a Hadamard code. Using a full search for small binary codes we found that optimal or near-optimal codes of increasing length can be obtained in a nested manner by utilizing Hadamard matrix columns. The codes can be linear if the Hadamard matrix is linear and non-linear otherwise. The design methodology was extended to the generic complex codes by utilizing columns of newly derived or existing unitary codes. The inherent nested nature of the codes make them ideal for progressive transmission. Extensive comparisons to metric bounds and to previously designed codes show the optimality or near-optimality of the new codes, designed for the fading and the additive white Gaussian noise channel (AWGN). It was also shown that linear codes can be optimal or at least meeting the metric bounds; one example is the systematic pilot-based code of rate k/(k + 1) which was proved to meet the lower bound on the maximum cross-correlation. Further, the method was generalized such that good codes for arbitrary channels can be designed given the corresponding metric or the pairwise error probability. In synchronous multiple-access schemes it is common to use unitary block codes to transmit the multiple users information, especially in the downlink. In this work we suggest the use of newly designed non-unitary block codes, resulting in increased throughput efficiency, while the performance is shown not to be substantially sacrificed. The non-unitary codes are again developed through suitable nested searches. In addition, new multiple-access codes are introduced that optimize certain criteria, such as the sum-rate capacity. Finally, the introduction of the asymptotically optimum convolutional codes for a given constraint length, reduces dramatically the search size for good convolutional codes of a certain asymptotic performance, and the consequences to coded code-division multiple access (CDMA) system design are highlighted
    corecore