306 research outputs found

    Digital communications over fading channels

    Get PDF
    In this report, the probabilities of bit error for the most commonly used digital modulation techniques are analyzed. Analytic solutions are developed for the probability of bit error when the signal is affected by the most commonly encountered impairment to system performance for a wireless channel, the transmission of the signal over a fading channel. In this report, the effect of a slow, flat Ricean fading channel on communications systems performance is examined. Since channel fading significantly degrades the performance of a communication system, the performance of digital communication systems that also use forward error correction channel coding is analyzed for hard decision decoding and, where appropriate, for soft decision decoding. Diversity, another technique to mitigate the effect of fading channels on digital communication systems performance, is also discussed. Also included is a discussion of the effect of narrowband noise interference, both continuous and pulsed, on digital communication systems. We then discuss the analysis of the probability of bit error for the combination of error correction coding and diversity. Following this, we briefly discuss spread spectrum systems. Next, we examine the link budget analysis and various models for channel loss. Finally, we examine in detail the second generation digital wireless standard Global System for Mobile (GSM).Approved for public release; distribution is unlimited

    Narrow band digital modulation for land mobile radio.

    Get PDF

    Conditions for a Monotonic Channel Capacity

    Full text link
    Motivated by results in optical communications, where the performance can degrade dramatically if the transmit power is sufficiently increased, the channel capacity is characterized for various kinds of memoryless vector channels. It is proved that for all static point-to-point channels, the channel capacity is a nondecreasing function of power. As a consequence, maximizing the mutual information over all input distributions with a certain power is for such channels equivalent to maximizing it over the larger set of input distributions with upperbounded power. For interference channels such as optical wavelength-division multiplexing systems, the primary channel capacity is always nondecreasing with power if all interferers transmit with identical distributions as the primary user. Also, if all input distributions in an interference channel are optimized jointly, then the achievable sum-rate capacity is again nondecreasing. The results generalizes to the channel capacity as a function of a wide class of costs, not only power.Comment: This is an updated and expanded version of arXiv:1108.039

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed
    • …
    corecore