90 research outputs found

    The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents

    Full text link
    We consider the secret key generation problem when sources are randomly excited by the sender and there is a noiseless public discussion channel. Our setting is thus similar to recent works on channels with action-dependent states where the channel state may be influenced by some of the parties involved. We derive single-letter expressions for the secret key capacity through a type of source emulation analysis. We also derive lower bounds on the achievable reliability and secrecy exponents, i.e., the exponential rates of decay of the probability of decoding error and of the information leakage. These exponents allow us to determine a set of strongly-achievable secret key rates. For degraded eavesdroppers the maximum strongly-achievable rate equals the secret key capacity; our exponents can also be specialized to previously known results. In deriving our strong achievability results we introduce a coding scheme that combines wiretap coding (to excite the channel) and key extraction (to distill keys from residual randomness). The secret key capacity is naturally seen to be a combination of both source- and channel-type randomness. Through examples we illustrate a fundamental interplay between the portion of the secret key rate due to each type of randomness. We also illustrate inherent tradeoffs between the achievable reliability and secrecy exponents. Our new scheme also naturally accommodates rate limits on the public discussion. We show that under rate constraints we are able to achieve larger rates than those that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on Information Theory; Revised in Oct 201

    Efficient Wireless Security Through Jamming, Coding and Routing

    Full text link
    There is a rich recent literature on how to assist secure communication between a single transmitter and receiver at the physical layer of wireless networks through techniques such as cooperative jamming. In this paper, we consider how these single-hop physical layer security techniques can be extended to multi-hop wireless networks and show how to augment physical layer security techniques with higher layer network mechanisms such as coding and routing. Specifically, we consider the secure minimum energy routing problem, in which the objective is to compute a minimum energy path between two network nodes subject to constraints on the end-to-end communication secrecy and goodput over the path. This problem is formulated as a constrained optimization of transmission power and link selection, which is proved to be NP-hard. Nevertheless, we show that efficient algorithms exist to compute both exact and approximate solutions for the problem. In particular, we develop an exact solution of pseudo-polynomial complexity, as well as an epsilon-optimal approximation of polynomial complexity. Simulation results are also provided to show the utility of our algorithms and quantify their energy savings compared to a combination of (standard) security-agnostic minimum energy routing and physical layer security. In the simulated scenarios, we observe that, by jointly optimizing link selection at the network layer and cooperative jamming at the physical layer, our algorithms reduce the network energy consumption by half

    Journal of Telecommunications and Information Technology, 2003, nr 4

    Get PDF
    kwartalni
    corecore