20 research outputs found

    DCSS protocol for data caching and sharing security in a 5G network

    Get PDF
    Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted

    DCSS protocol for data caching and sharing security in a 5G network

    Get PDF
    Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted

    Authorization and authentication strategy for mobile highly constrained edge devices

    Get PDF
    The rising popularity of mobile devices has driven the need for faster connection speeds and more flexible authentication and authorization methods. This project aims to develop and implement an innovative system that provides authentication and authorization for both the device and the user. It also facilitates real-time user re-authentication within the application, ensuring transparency throughout the process. Additionally, the system aims to establish a secure architecture that minimizes the computational requirements on the client's device, thus optimizing the device's battery life. The achieved results have demonstrated satisfactory outcomes, validating the effectiveness of the proposed solution. However, there is still potential for further improvement to enhance its overall performance

    Token Based Authentication and Authorization with Zero-Knowledge Proofs for Enhancing Web API Security and Privacy

    Get PDF
    This design science study showcases an innovative artifact that utilizes Zero-Knowledge Proofs for API Authentication and Authorization. A comprehensive examination of existing literature and technology is conducted to evaluate the effectiveness of this alternative approach. The study reveals that existing APIs are using slower techniques that don’t scale, can’t take advantage of newer hardware, and have been unable to adequately address current security issues. In contrast, the novel technique presented in this study performs better, is more resilient in privacy sensitive and security settings, and is easy to implement and deploy. Additionally, this study identifies potential avenues for further research that could help advance the field of Web API development in terms of security, privacy, and simplicity

    Security for network services delivery of 5G enabled device-to-device communications mobile network

    Get PDF
    The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network. 5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) communications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC) and push content closer to User Equipment (UE). It will be supported by a variety of Network Service (NS) such as Content-Centric Networking (CCN) that will provide access to other services and deliver content-based services. However, this raises new security and delivery challenges. Therefore, research was conducted to address the security issues in delivering NS in 5G enabled D2D communications network. To support D2D communications in 5G, this thesis introduces a Network Services Delivery (NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Network (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled D2D communications by conducting a comprehensive investigation on security threats. It analyses threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic approach based on X.805 security framework. Which aligns security requirements with network connectivity, service delivery, and sharing between entities. This analysis highlights the need for security mechanisms to provide security to NSD in an integrated system, to specify these security mechanisms, a security framework to address the security challenges at different levels of the system model is introduced. To align suitable security mechanisms, the research defines underlying security protocols to provide security at the network, service, and D2D levels. This research also explores 5G authentication protocols specified by the Third Generation Partnership Project (3GPP) for securing communication between UE and HN, checks the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement (AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentication at Network Access Security (NAC). The research addresses Service Level Security (SLS) by proposing Federated Identity Management (FIdM) model to integrate federated security in 5G, it also proposes three security protocols to provide secondary authentication and authorization of UE to Service Provider (SP). It also addresses D2D Service Security (DDS) by proposing two security protocols that secure the caching and sharing of services between two UEs in different D2D communications scenarios. All protocols in this research are verified for functional correctness and security guarantees using a formal method approach and semi-automated protocol verifier. The research conducts security properties and performance evaluation of the protocols for their effectiveness. It also presents how each proposed protocol provides an interface for an integrated, comprehensive security solution to secure communications for NSD in a 5G enabled D2D communications network. The main contributions of this research are the design and formal verification of security protocols. Performance evaluation is supplementary

    Data Protection for the Internet of Things

    Get PDF
    The Internet of Things (abbreviated: “IoT”) is acknowledged as one of the most important disruptive technologies with more than 16 billion devices forecasted to interact autonomously by 2020. The idea is simple, devices will help to measure the status of physical objects. The devices, containing sensors and actuators, are so small that they can be integrated or attached to any object in order to measure that object and possibly change its status accordingly. A process or work flow is then able to interact with those devices and to control the objects physically. The result is the collection of massive data in a ubiquitous form. This data can be analysed to gain new insights, a benefit propagated by the “Big Data” and “Smart Data” paradigms. While governments, cities and industries are heavily involved in the Internet of Things, society’s privacy awareness and the concerns over data protection in IoT increase steadily. The scale of the collection, processing and dissemination of possibly private information in the Internet of Things has long begun to raise privacy concerns. The problem is a fundamental one, it is the massive data collection that benefits the investment on IoT, while it contradicts the interest on data minimization coming from privacy advocates. And the challenges go even further, while privacy is an actively researched topic with a mature variety of privacy preserving mechanisms, legal studies and surveillance studies in specific contexts, investigations of how to apply this concepts in the constrained environment of IoT have merely begun. Thus the objective of this thesis is threefold and tackles several topics, looking at them in a differentiated way and later bringing them together for one of the first, (more) complete pictures of privacy in IoT. The first starting point is the throughout study of stakeholders, impact areas and proposals on an architectural reference model for IoT. At the time of this writing, IoT was adversed heavily by several companies, products and even governments, creating a blurred picture of what IoT really is. This thesis surveys stakeholders, scenarios, architecture paradigms and definitions to find a working definition for IoT which adequately describes the intersection between all of the aforementioned topics. In a further step, the definition is applied exemplary on two scenarios to identify the common building blocks of those scenarios and of IoT in general. The building blocks are then verified against a similar approach by the IoT-A and Rerum projects and unified to an IoT domain model. This approach purposefully uses notions and paradigms provided in related scientific work and European projects in order to benefit from existing efforts and to achieve a common understanding. In this thesis, the observation of so called cyber-physical properties of IoT leads to the conclusion that IoT proposals miss a core concept of physical interaction in the “real world”. Accordingly, this thesis takes a detour to jurisdiction and identifies ownership and possession as a main concept of “human-to-object” relationships. The analysis of IoT building blocks ends with an enhanced IoT domain model. The next step breaks down “privacy by design”. Notably hereby is that privacy by design has been well integrated in to the new European General Data Protection Regulation (GDPR). This regulation heavily affects IoT and thus serves as the main source of privacy requirements. Gürses et al.’s privacy paradigm (privacy as confidentiality, privacy as control and privacy as practice) is used for the breakdown, preceded by a survey of relevant privacy proposals, where relevancy was measured upon previously identified IoT impact areas and stakeholders. Independently from IoT, this thesis shows that privacy engineering is a task that still needs to be well understood. A privacy development lifecycle was therefore sketched as a first step in this direction. Existing privacy technologies are part of the survey. Current research is summed up to show that while many schemes exist, few are adequate for actual application in IoT due to their high energy or computational consumption and high implementation costs (most notably caused by the implementation of special arithmetics). In an effort to give a first direction on possible new privacy enhancing technologies for IoT, new technical schemes are presented, formally verified and evaluated. The proposals comprise schemes, among others, on relaxed integrity protection, privacy friendly authentication and authorization as well as geo-location privacy. The schemes are presented to industry partners with positive results. This technologies have thus been published in academia and as intellectual property items. This thesis concludes by bringing privacy and IoT together. The final result is a privacy enhanced IoT domain model accompanied by a set of assumptions regarding stakeholders, economic impacts, economic and technical constraints as well as formally verified and evaluated proof of concept technologies for privacy in IoT. There is justifiable interest in IoT as it helps to tackle many future challenges found in several impact areas. At the same time, IoT impacts the stakeholders that participate in those areas, creating the need for unification of IoT and privacy. This thesis shows that technical and economic constraints do not impede such a process, although the process has merely begun
    corecore