79 research outputs found

    Unification of Transactions and Replication in Three-Tier Architectures Based on CORBA

    Get PDF
    In this paper, we describe a software infrastructure that unifies transactions and replication in three-tier architectures and provides data consistency and high availability for enterprise applications. The infrastructure uses transactions based on the CORBA object transaction service to protect the application data in databases on stable storage, using a roll-backward recovery strategy, and replication based on the fault tolerant CORBA standard to protect the middle-tier servers, using a roll-forward recovery strategy. The infrastructure replicates the middle-tier servers to protect the application business logic processing. In addition, it replicates the transaction coordinator, which renders the two-phase commit protocol nonblocking and, thus, avoids potentially long service disruptions caused by failure of the coordinator. The infrastructure handles the interactions between the replicated middle-tier servers and the database servers through replicated gateways that prevent duplicate requests from reaching the database servers. It implements automatic client-side failover mechanisms, which guarantee that clients know the outcome of the requests that they have made, and retries aborted transactions automatically on behalf of the clients

    Crafting Concurrent Data Structures

    Get PDF
    Concurrent data structures lie at the heart of modern parallel programs. The design and implementation of concurrent data structures can be challenging due to the demand for good performance (low latency and high scalability) and strong progress guarantees. In this dissertation, we enrich the knowledge of concurrent data structure design by proposing new implementations, as well as general techniques to improve the performance of existing ones.The first part of the dissertation present an unordered linked list implementation that supports nonblocking insert, remove, and lookup operations. The algorithm is based on a novel ``enlist\u27\u27 technique that greatly simplifies the task of achieving wait-freedom. The value of our technique is also demonstrated in the creation of other wait-free data structures such as stacks and hash tables.The second data structure presented is a nonblocking hash table implementation which solves a long-standing design challenge by permitting the hash table to dynamically adjust its size in a nonblocking manner. Additionally, our hash table offers strong theoretical properties such as supporting unbounded memory. In our algorithm, we introduce a new ``freezable set\u27\u27 abstraction which allows us to achieve atomic migration of keys during a resize. The freezable set abstraction also enables highly efficient implementations which maximally exploit the processor cache locality. In experiments, we found our lock-free hash table performs consistently better than state-of-the-art implementations, such as the split-ordered list.The third data structure we present is a concurrent priority queue called the ``mound\u27\u27. Our implementations include nonblocking and lock-based variants. The mound employs randomization to reduce contention on concurrent insert operations, and decomposes a remove operation into smaller atomic operations so that multiple remove operations can execute in parallel within a pipeline. In experiments, we show that the mound can provide excellent latency at low thread counts.Lastly, we discuss how hardware transactional memory (HTM) can be used to accelerate existing nonblocking concurrent data structure implementations. We propose optimization techniques that can significantly improve the performance (1.5x to 3x speedups) of a variety of important concurrent data structures, such as binary search trees and hash tables. The optimizations also preserve the strong progress guarantees of the original implementations

    Database recovery

    Get PDF
    Recovery techniques are an important aspect of database systems. They are essential to ensure that data integrity is maintained after any type of failure occurs. The recovery mechanism must be designed so that the availability and performance of the system are not unacceptably impacted by the recovery algorithms running during normal execution. On the other hand, enough information must be stored so that the database can be restored or transactions backed out in a reasonable amount of time. Concepts, techniques, and problems associated with database recovery will be presented in this thesis. The recovery issues for both centralized and distributed systems will be discussed, along with the tradeoffs of different recovery tools. The database recovery schemes in IMS/VS, DB2 and SDD-1 will be described to show approaches in existing systems

    Architectural and compiler support for strongly atomic transactional memory

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 199-212).Transactions are gaining ground as a programmer-friendly means of expressing concurrency, as microarchitecture trends make it clear that parallel systems are in our future. This thesis presents the design and implementation of four efficient and powerful transaction systems: ApeX, an object oriented software-only system; UTM and LTM, two scalable systems using custom processor extensions; and HyApeX, a hybrid of the software and hardware systems, obtaining the benefits of both. The software transaction system implements strong atomicity, which ensures that transactions are protected from the influence of nontransactional code. Previous software systems use weaker atomicity guarantees because strong atomicity is presumed to be too expensive. In this thesis strong atomicity is obtained with minimal slowdown for nontransactional code. Compiler analyses can further improve the eciency of the mechanism, which has been formally veried with the Spin model-checker. The low overhead of ApeX allows it to be protably combined with a hardware transaction system to provide fast execution of short and small transactions, while allowing fallback to software for large or complicated transactions. I present UTM, a hardware transactional memory system allowing unbounded virtualizable transactions, and show how a hybrid system can be obtained.by C. Scott Ananian.Ph.D

    Towards fair, scalable, locking

    Get PDF
    Without care, Hardware Transactional Memory presents several performance pathologies that can degrade its performance. Among them, writers of commonly read variables can suffer from starvation. Though different solutions have been proposed for HTM systems, hybrid systems can still suffer from this performance problem, given that software transactions don’t interact with the mechanisms used by hardware to avoid starvation. In this paper we introduce a new per-directory-line hardware contention management mechanism that allows fairer access between both software and hardware threads without the need to abort any transaction. Our mechanism is based on “reserving” directory lines, implementing a limited fair queue for the requests on that line. We adapt the mechanism to the LogTM conflict detection mechanism and show that the resulting proposal is deadlock free. Finally, we sketch how the idea could be applied more generally to reader-writer locks.Postprint (published version

    Tailoring Transactional Memory to Real-World Applications

    Get PDF
    Transactional Memory (TM) promises to provide a scalable mechanism for synchronizationin concurrent programs, and to offer ease-of-use benefits to programmers. Since multiprocessorarchitectures have dominated CPU design, exploiting parallelism in program

    New hardware support transactional memory and parallel debugging in multicore processors

    Get PDF
    This thesis contributes to the area of hardware support for parallel programming by introducing new hardware elements in multicore processors, with the aim of improving the performance and optimize new tools, abstractions and applications related with parallel programming, such as transactional memory and data race detectors. Specifically, we configure a hardware transactional memory system with signatures as part of the hardware support, and we develop a new hardware filter for reducing the signature size. We also develop the first hardware asymmetric data race detector (which is also able to tolerate them), based also in hardware signatures. Finally, we propose a new module of hardware signatures that solves some of the problems that we found in the previous tools related with the lack of flexibility in hardware signatures
    • …
    corecore