12 research outputs found

    Supervisory control of discrete-event systems with output : application to hybrid systems

    Get PDF
    In this thesis, the problem of supervisory control of Discrete-Event Systems (DES) with output is presented and discussed at length. In such systems, causal output functions are employed to assign each sequence of inputs with a corresponding sequence of outputs. When the specification of the desired behavior is given by a formal language over the output alphabet, necessary and sufficient conditions are derived for the existence of nonblocking input as well as nonblocking output supervisory controls. An algorithm is presented to extend the results of nonblocking input/output supervisory control from language-based framework into finite automata framework, making the proposed results applicable to large scale discrete-event systems. The idea of siblings is introduced to solve the problem of nondeterminism in discrete-event abstractions of hybrid systems, giving rise to the development of a theory for nonblocking supervisory control of hybrid systems. Our results enable one to apply classical supervisory control theory to design supervisors for DES approximations of hybrid systems, and to import many interesting concepts from classical theory such as modular and hierarchical control

    Bisimulation, the Supervisory Control Problem and Strong Model Matching for Finite State Machines

    Full text link
    A fundamental relationship between the controllability of a language with respect to another language and a set of uncontrollable events in the Supervisory Control Theory initiated by (Ramadge and Wonham, 1989) and bisimulation of automata models is derived. The theoretical results relating bisimulation to controllability support an efficient solution to the Basic Supervisory Control Problem. Using (Fernandez, 1990) generalization of the partition refinement algorithm of (Paige and Tarjan, 1987), it is possible to find a partition which represents the supremal controllable sublanguage of an automaton with respect to the language of another automaton and a set of events in a worst-case running time of O( m log( n )), where m is the number of transitions and n is the number of states. Utilizing the bisimulation property of language controllability and derived relationships between automata languages and input/output finite-state machine behaviors, a precise relationship is formally derived between Supervisory Control Theory and the system-theoretic problem posed by (DiBenedetto et al., 1994) called Strong Input/Output FSM Model Matching. Specifically, it is proven that in deterministic settings instances of each problem can be mapped to the other framework and solved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45127/1/10626_2004_Article_184721.pd

    Model-based supervisory control synthesis of cyber-physical systems

    Get PDF

    On Provably Correct Decision-Making for Automated Driving

    Get PDF
    The introduction of driving automation in road vehicles can potentially reduce road traffic crashes and significantly improve road safety. Automation in road vehicles also brings several other benefits such as the possibility to provide independent mobility for people who cannot and/or should not drive. Many different hardware and software components (e.g. sensing, decision-making, actuation, and control) interact to solve the autonomous driving task. Correctness of such automated driving systems is crucial as incorrect behaviour may have catastrophic consequences. Autonomous vehicles operate in complex and dynamic environments, which requires decision-making and planning at different levels. The aim of such decision-making components in these systems is to make safe decisions at all times. The challenge of safety verification of these systems is crucial for the commercial deployment of full autonomy in vehicles. Testing for safety is expensive, impractical, and can never guarantee the absence of errors. In contrast, formal methods, which are techniques that use rigorous mathematical models to build hardware and software systems can provide a mathematical proof of the correctness of the system. The focus of this thesis is to address some of the challenges in the safety verification of decision-making in automated driving systems. A central question here is how to establish formal verification as an efficient tool for automated driving software development.A key finding is the need for an integrated formal approach to prove correctness and to provide a complete safety argument. This thesis provides insights into how three different formal verification approaches, namely supervisory control theory, model checking, and deductive verification differ in their application to automated driving and identifies the challenges associated with each method. It identifies the need for the introduction of more rigour in the requirement refinement process and presents one possible solution by using a formal model-based safety analysis approach. To address challenges in the manual modelling process, a possible solution by automatically learning formal models directly from code is proposed

    From Security Enforcement to Supervisory Control in Discrete Event Systems: Qualitative and Quantitative Analyses

    Full text link
    Cyber-physical systems are technological systems that involve physical components that are monitored and controlled by multiple computational units that exchange information through a communication network. Examples of cyber-physical systems arise in transportation, power, smart manufacturing, and other classes of systems that have a large degree of automation. Analysis and control of cyber-physical systems is an active area of research. The increasing demands for safety, security and performance improvement of cyber-physical systems put stringent constraints on their design and necessitate the use of formal model-based methods to synthesize control strategies that provably enforce required properties. This dissertation focuses on the higher level control logic in cyber-physical systems using the framework of discrete event systems. It tackles two classes of problems for discrete event systems. The first class of problems is related to system security. This problem is formulated in terms of the information flow property of opacity. In this part of the dissertation, an interface-based approach called insertion/edit function is developed to enforce opacity under the potential inference of malicious intruders that may or may not know the implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions that solve the opacity enforcement problem in the framework of qualitative and quantitative games on finite graphs. The second problem treated in the dissertation is that of performance optimization in the context of supervisory control under partial observation. This problem is transformed to a two-player quantitative game and an information structure where the game is played is constructed. A novel approach to synthesize supervisors by solving the game is developed. The main contributions of this dissertation are grouped into the following five categories. (i) The transformation of the formulated opacity enforcement and supervisory control problems to games on finite graphs provides a systematic way of performing worst case analysis in design of discrete event systems. (ii) These games have state spaces that are as compact as possible using the notion of information states in each corresponding problem. (iii) A formal model-based approach is employed in the entire dissertation, which results in provably correct solutions. (iv) The approaches developed in this dissertation reveal the interconnection between control theory and formal methods. (v) The results in this dissertation are applicable to many types of cyber-physical systems with security-critical and performance-aware requirements.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150002/1/jiyiding_1.pd

    Verification and Enforcement of Opacity Security Properties in Discrete Event Systems.

    Full text link
    The need for stringent cybersecurity is becoming significant as computers and networks are integrated into every aspect of our lives. A recent trend in cybersecurity research is to formalize security notions and develop theoretical foundations for designing secure systems. In this dissertation, we address a security notion called opacity based on the control theory for Discrete Event Systems (DES). Opacity is an information-flow property that captures whether a given secret of the system can be inferred by intruders who passively observe the behavior of the system. Finite-state automata are used to capture the dynamics of computer systems that need to be rendered opaque with respect to a given secret. Under the observation of the intruder, the secret of the system is opaque if “whenever the secret has occurred, there exists another non-secret behavior that is observationally equivalent.” This research focuses on the analysis and the enforcement of four notions of opacity. First, we develop algorithms for verifying opacity notions under the attack model of a single intruder and that of multiple colluding intruders. We then consider the enforcement of opacity when the secret is not opaque. Specifically, we propose a novel enforcement mechanism based on event insertion to address opacity enforcement for a class of systems whose dynamics cannot be modified. An insertion function, placed at the output of the system, inserts fictitious observable events to the system’s output without interacting with the system. We develop a finite structure called the All-Insertion Structure (AIS) that enumerates all valid insertion functions. The AIS establishes a necessary and sufficient condition for the existence of a valid insertion function, and provides a structure to synthesize one insertion function. Furthermore, we introduce the maximum total cost and the maximum mean cost to quantify insertion functions. A condition for determining which cost objective to use is established. For each cost, we develop an algorithmic procedure for synthesizing an optimal insertion function from the AIS. Finally, our analysis and enforcement procedure is applied to ensuring location privacy in location-based services.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108905/1/ycwu_1.pd

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties
    corecore