114 research outputs found

    Quantum codes from a new construction of self-orthogonal algebraic geometry codes

    Get PDF
    [EN] We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.G. McGuire was partially supported by Science Foundation Ireland Grant 13/IA/1914. The remainder authors were partially supported by the Spanish Government and the EU funding program FEDER, Grants MTM2015-65764-C3-2-P and PGC2018-096446-B-C22. F. Hernando and J. J. Moyano-Fernandez are also partially supported by Universitat Jaume I, Grant UJI-B2018-10.Hernando, F.; Mcguire, G.; Monserrat Delpalillo, FJ.; Moyano-Fernández, JJ. (2020). Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Information Processing. 19(4):1-25. https://doi.org/10.1007/s11128-020-2616-8S125194Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74, 190–257 (1989)Abhyankar, S.S.: Algebraic Geometry for Scientists and Engineers. Mathematical Surveys and Monographs, American Mathematical Society, Providence (1990)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)Duursma, I.M.: Algebraic geometry codes: general theory. In: Advances in Algebraic Geometry Codes, Series of Coding Theory and Cryptology, vol. 5. World Scientific, Singapore (2008)Feng, K.: Quantum error correcting codes. In: Coding Theory and Cryptology, pp. 91–142. Word Scientific (2002)Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)Galindo, C., Geil, O., Hernando, F., Ruano, D.: On the distance of stabilizer quantum codes from JJ-affine variety codes. Quantum Inf. Process 16, 111 (2017)Galindo, C., Hernando, F., Matsumoto, R.: Quasi-cyclic construction of quantum codes. Finite Fields Appl. 52, 261–280 (2018)Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from JJ-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process 14, 3211–3231 (2015)Galindo, C., Hernando, F., Ruano, D.: Classical and quantum evaluation codes at the trace roots. IEEE Trans. Inf. Theory 16, 2593–2602 (2019)Garcia, A.: On AG codes and Artin–Schreier extensions. Commun. Algebra 20(12), 3683–3689 (1992)Goppa, V.D.: Geometry and Codes. Mathematics and its Applications, vol. 24. Kluwer, Dordrecht (1991)Goppa, V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1977)Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)Grassl, M., Rötteler, M.: Quantum BCH codes. In: Proceedings X International Symposium Theory Electrical Engineering, pp. 207–212. Germany (1999)Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)He, X., Xu, L., Chen, H.: New qq-ary quantum MDS codes with distances bigger than q/2q/2. Quantum Inf. Process. 15(7), 2745–2758 (2016)Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008)Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic geometry codes. Handb. Coding Theory 1, 871–961 (1998)Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 4489–5484 (2012)Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006)La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for pmp^m state systems from classical error correcting codes. IEICE Trans. Fund. E83–A, 1878–1883 (2000)McGuire, G., Yılmaz, E.S.: Divisibility of L-polynomials for a family of Artin–Schreier curves. J. Pure Appl. Algebra 223(8), 3341–3358 (2019)Munuera, C., Sepúlveda, A., Torres, F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009)Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of castle type. Quantum Inf. Process. 15, 4071–4088 (2016)Pellikaan, R., Shen, B.Z., van Wee, G.J.M.: Which linear codes are algebraic-geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991)Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996)Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982

    Algebraic geometric construction of a quantum stabilizer code

    Get PDF
    The stabilizer code is the most general algebraic construction of quantum error-correcting codes proposed so far. A stabilizer code can be constructed from a self-orthogonal subspace of a symplectic space over a finite field. We propose a construction method of such a self-orthogonal space using an algebraic curve. By using the proposed method we construct an asymptotically good sequence of binary stabilizer codes. As a byproduct we improve the Ashikhmin-Litsyn-Tsfasman bound of quantum codes. The main results in this paper can be understood without knowledge of quantum mechanics.Comment: LaTeX2e, 12 pages, 1 color figure. A decoding method was added and several typographical errors were corrected in version 2. The description of the decoding problem was completely wrong in version 1. In version 1 and 2, there was a critical miscalculation in the estimation of parameters of codes, and the constructed sequence of codes turned out to be worse than existing ones. The asymptotically best sequence of quantum codes was added in version 3. Section 3.2 appeared in IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 2122-2124, July 200

    Quantum codes from two-point Hermitian codes

    Get PDF
    We explore the background on error-correcting codes, including linear codes and quantum codes from curves. Then we consider the parameters of quantum codes constructed from two-point Hermitian codes

    Asymptotically Good Quantum Codes

    Get PDF
    Using algebraic geometry codes we give a polynomial construction of quantum codes with asymptotically non-zero rate and relative distance.Comment: 15 pages, 1 figur

    Codes as fractals and noncommutative spaces

    Get PDF
    We consider the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces constructed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian group actions on Cuntz algebras and fractals associated to the classical codes.Comment: 18 pages LaTeX, one png figur
    • …
    corecore