24,358 research outputs found

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin

    Adaptive Non-uniform Compressive Sampling for Time-varying Signals

    Full text link
    In this paper, adaptive non-uniform compressive sampling (ANCS) of time-varying signals, which are sparse in a proper basis, is introduced. ANCS employs the measurements of previous time steps to distribute the sensing energy among coefficients more intelligently. To this aim, a Bayesian inference method is proposed that does not require any prior knowledge of importance levels of coefficients or sparsity of the signal. Our numerical simulations show that ANCS is able to achieve the desired non-uniform recovery of the signal. Moreover, if the signal is sparse in canonical basis, ANCS can reduce the number of required measurements significantly.Comment: 6 pages, 8 figures, Conference on Information Sciences and Systems (CISS 2017) Baltimore, Marylan

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Pushing towards the Limit of Sampling Rate: Adaptive Chasing Sampling

    Full text link
    Measurement samples are often taken in various monitoring applications. To reduce the sensing cost, it is desirable to achieve better sensing quality while using fewer samples. Compressive Sensing (CS) technique finds its role when the signal to be sampled meets certain sparsity requirements. In this paper we investigate the possibility and basic techniques that could further reduce the number of samples involved in conventional CS theory by exploiting learning-based non-uniform adaptive sampling. Based on a typical signal sensing application, we illustrate and evaluate the performance of two of our algorithms, Individual Chasing and Centroid Chasing, for signals of different distribution features. Our proposed learning-based adaptive sampling schemes complement existing efforts in CS fields and do not depend on any specific signal reconstruction technique. Compared to conventional sparse sampling methods, the simulation results demonstrate that our algorithms allow 46%46\% less number of samples for accurate signal reconstruction and achieve up to 57%57\% smaller signal reconstruction error under the same noise condition.Comment: 9 pages, IEEE MASS 201

    On the SNR Variability in Noisy Compressed Sensing

    Full text link
    Compressed sensing (CS) is a sampling paradigm that allows to simultaneously measure and compress signals that are sparse or compressible in some domain. The choice of a sensing matrix that carries out the measurement has a defining impact on the system performance and it is often advocated to draw its elements randomly. It has been noted that in the presence of input (signal) noise, the application of the sensing matrix causes SNR degradation due to the noise folding effect. In fact, it might also result in the variations of the output SNR in compressive measurements over the support of the input signal, potentially resulting in unexpected non-uniform system performance. In this work, we study the impact of a distribution from which the elements of a sensing matrix are drawn on the spread of the output SNR. We derive analytic expressions for several common types of sensing matrices and show that the SNR spread grows with the decrease of the number of measurements. This makes its negative effect especially pronounced for high compression rates that are often of interest in CS.Comment: 4 pages + reference

    Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Get PDF
    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.Comment: 32 page
    corecore