18,750 research outputs found

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective

    Full text link
    This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making

    Sign Language Translation from Instructional Videos

    Full text link
    The advances in automatic sign language translation (SLT) to spoken languages have been mostly benchmarked with datasets of limited size and restricted domains. Our work advances the state of the art by providing the first baseline results on How2Sign, a large and broad dataset. We train a Transformer over I3D video features, using the reduced BLEU as a reference metric for validation, instead of the widely used BLEU score. We report a result of 8.03 on the BLEU score, and publish the first open-source implementation of its kind to promote further advances.Comment: Paper accepted at WiCV @CVPR2

    Comedians without a Cause: The Politics and Aesthetics of Humour in Dutch Cabaret (1966-2020)

    Get PDF
    Comedians play an important role in society and public debate. While comedians have been considered important cultural critics for quite some time, comedy has acquired a new social and political significance in recent years, with humour taking centre stage in political and social debates around issues of identity, social justice, and freedom of speech. To understand the shifting meanings and political implications of humour within a Dutch context, this PhD thesis examines the political and aesthetic workings of humour in the highly popular Dutch cabaret genre, focusing on cabaret performances from the 1960s to the present. The central questions of the thesis are: how do comedians use humour to deliver social critique, and how does their humour resonate with political ideologies? These questions are answered by adopting a cultural studies approach to humour, which is used to analyse Dutch cabaret performances, and by studying related materials such as reviews and media interviews with comedians. This thesis shows that, from the 1960s onwards, Dutch comedians have been considered ‚Äėprogressive rebels‚Äô ‚Äď politically engaged, subversive, and carrying a left-wing political agenda ‚Äď but that this image is in need of correction. While we tend to look for progressive political messages in the work of comedians who present themselves as being anti-establishment rebels ‚Äď such as Youp van ‚Äėt Hek, Hans Teeuwen, and Theo Maassen ‚Äď this thesis demonstrates that their transgressive and provocative humour tends to protect social hierarchies and relationships of power. Moreover, it shows that, paradoxically, both the deliberately moderate and nuanced humour of Wim Kan and Claudia de Breij, and the seemingly past-oriented nostalgia of Alex Klaasen, are more radical and progressive than the transgressive humour of van ‚Äėt Hek, Teeuwen and Maassen. Finally, comedians who present absurdist or deconstructionist forms of humour, such as the early student cabarets, Freek de Jonge, and Micha Wertheim, tend to disassociate themselves from an explicit political engagement. By challenging the dominant image of the Dutch comedian as a ‚Äėprogressive rebel,‚Äô this thesis contributes to a better understanding of humour in the present cultural moment, in which humour is often either not taken seriously, or one-sidedly celebrated as being merely pleasurable, innocent, or progressively liberating. In so doing, this thesis concludes, the ‚Äėdark‚Äô and more conservative sides of humour tend to get obscured

    Identifying Student Profiles Within Online Judge Systems Using Explainable Artificial Intelligence

    Get PDF
    Online Judge (OJ) systems are typically considered within programming-related courses as they yield fast and objective assessments of the code developed by the students. Such an evaluation generally provides a single decision based on a rubric, most commonly whether the submission successfully accomplished the assignment. Nevertheless, since in an educational context such information may be deemed insufficient, it would be beneficial for both the student and the instructor to receive additional feedback about the overall development of the task. This work aims to tackle this limitation by considering the further exploitation of the information gathered by the OJ and automatically inferring feedback for both the student and the instructor. More precisely, we consider the use of learning-based schemes‚ÄĒparticularly, Multi-Instance Learning and classical Machine Learning formulations‚ÄĒto model student behaviour. Besides, Explainable Artificial Intelligence is contemplated to provide human-understandable feedback. The proposal has been evaluated considering a case of study comprising 2,500 submissions from roughly 90 different students from a programming-related course in a Computer Science degree. The results obtained validate the proposal: the model is capable of significantly predicting the user outcome (either passing or failing the assignment) solely based on the behavioural pattern inferred by the submissions provided to the OJ. Moreover, the proposal is able to identify prone-to-fail student groups and profiles as well as other relevant information, which eventually serves as feedback to both the student and the instructor.This work has been partially funded by the ‚ÄúPrograma Redes-I3CE de investigacion en docencia universitaria del Instituto de Ciencias de la Educacion (REDES-I3CE-2020-5069)‚ÄĚ of the University of Alicante. The third author is supported by grant APOSTD/2020/256 from ‚ÄúPrograma I+D+I de la Generalitat Valenciana‚ÄĚ

    Pretrained Embeddings for E-commerce Machine Learning: When it Fails and Why?

    Full text link
    The use of pretrained embeddings has become widespread in modern e-commerce machine learning (ML) systems. In practice, however, we have encountered several key issues when using pretrained embedding in a real-world production system, many of which cannot be fully explained by current knowledge. Unfortunately, we find that there is a lack of a thorough understanding of how pre-trained embeddings work, especially their intrinsic properties and interactions with downstream tasks. Consequently, it becomes challenging to make interactive and scalable decisions regarding the use of pre-trained embeddings in practice. Our investigation leads to two significant discoveries about using pretrained embeddings in e-commerce applications. Firstly, we find that the design of the pretraining and downstream models, particularly how they encode and decode information via embedding vectors, can have a profound impact. Secondly, we establish a principled perspective of pre-trained embeddings via the lens of kernel analysis, which can be used to evaluate their predictability, interactively and scalably. These findings help to address the practical challenges we faced and offer valuable guidance for successful adoption of pretrained embeddings in real-world production. Our conclusions are backed by solid theoretical reasoning, benchmark experiments, as well as online testings

    Multi-step Jailbreaking Privacy Attacks on ChatGPT

    Full text link
    With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given good prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI's model APIs and New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause more severe privacy threats ever than before. To this end, we conduct extensive experiments to support our claims and discuss LLMs' privacy implications.Comment: Work in progres

    A scoping review of natural language processing of radiology reports in breast cancer

    Get PDF
    Various natural language processing (NLP) algorithms have been applied in the literature to analyze radiology reports pertaining to the diagnosis and subsequent care of cancer patients. Applications of this technology include cohort selection for clinical trials, population of large-scale data registries, and quality improvement in radiology workflows including mammography screening. This scoping review is the first to examine such applications in the specific context of breast cancer. Out of 210 identified articles initially, 44 met our inclusion criteria for this review. Extracted data elements included both clinical and technical details of studies that developed or evaluated NLP algorithms applied to free-text radiology reports of breast cancer. Our review illustrates an emphasis on applications in diagnostic and screening processes over treatment or therapeutic applications and describes growth in deep learning and transfer learning approaches in recent years, although rule-based approaches continue to be useful. Furthermore, we observe increased efforts in code and software sharing but not with data sharing

    GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question Answering

    Full text link
    In this work, we present an end-to-end Knowledge Graph Question Answering (KGQA) system named GETT-QA. GETT-QA uses T5, a popular text-to-text pre-trained language model. The model takes a question in natural language as input and produces a simpler form of the intended SPARQL query. In the simpler form, the model does not directly produce entity and relation IDs. Instead, it produces corresponding entity and relation labels. The labels are grounded to KG entity and relation IDs in a subsequent step. To further improve the results, we instruct the model to produce a truncated version of the KG embedding for each entity. The truncated KG embedding enables a finer search for disambiguation purposes. We find that T5 is able to learn the truncated KG embeddings without any change of loss function, improving KGQA performance. As a result, we report strong results for LC-QuAD 2.0 and SimpleQuestions-Wikidata datasets on end-to-end KGQA over Wikidata.Comment: 16 pages single column format accepted at ESWC 2023 research trac

    Scalable and Accurate Self-supervised Multimodal Representation Learning without Aligned Video and Text Data

    Full text link
    Scaling up weakly-supervised datasets has shown to be highly effective in the image-text domain and has contributed to most of the recent state-of-the-art computer vision and multimodal neural networks. However, existing large-scale video-text datasets and mining techniques suffer from several limitations, such as the scarcity of aligned data, the lack of diversity in the data, and the difficulty of collecting aligned data. Currently popular video-text data mining approach via automatic speech recognition (ASR) used in HowTo100M provides low-quality captions that often do not refer to the video content. Other mining approaches do not provide proper language descriptions (video tags) and are biased toward short clips (alt text). In this work, we show how recent advances in image captioning allow us to pre-train high-quality video models without any parallel video-text data. We pre-train several video captioning models that are based on an OPT language model and a TimeSformer visual backbone. We fine-tune these networks on several video captioning datasets. First, we demonstrate that image captioning pseudolabels work better for pre-training than the existing HowTo100M ASR captions. Second, we show that pre-training on both images and videos produces a significantly better network (+4 CIDER on MSR-VTT) than pre-training on a single modality. Our methods are complementary to the existing pre-training or data mining approaches and can be used in a variety of settings. Given the efficacy of the pseudolabeling method, we are planning to publicly release the generated captions
    • ‚Ķ
    corecore