8,340 research outputs found

    Gaussian Process Regression for Estimating EM Ducting Within the Marine Atmospheric Boundary Layer

    Full text link
    We show that Gaussian process regression (GPR) can be used to infer the electromagnetic (EM) duct height within the marine atmospheric boundary layer (MABL) from sparsely sampled propagation factors within the context of bistatic radars. We use GPR to calculate the posterior predictive distribution on the labels (i.e. duct height) from both noise-free and noise-contaminated array of propagation factors. For duct height inference from noise-contaminated propagation factors, we compare a naive approach, utilizing one random sample from the input distribution (i.e. disregarding the input noise), with an inverse-variance weighted approach, utilizing a few random samples to estimate the true predictive distribution. The resulting posterior predictive distributions from these two approaches are compared to a "ground truth" distribution, which is approximated using a large number of Monte-Carlo samples. The ability of GPR to yield accurate and fast duct height predictions using a few training examples indicates the suitability of the proposed method for real-time applications.Comment: 15 pages, 6 figure

    Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies

    Get PDF
    Statistical downscaling is a commonly used technique for translating large-scale climate model output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be used in climate impact studies, downscaling must correct biases in the large-scale signal. A simple and generally effective method for accommodating systematic biases in large-scale model output is quantile mapping, which has been applied to many variables and shown to reduce biases on average, even in the presence of non-stationarity. Quantile-mapping bias correction has been applied at spatial scales ranging from hundreds of kilometers to individual points, such as weather station locations. Since water resources and other models used to simulate climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias correction at a scale fine enough that the downscaled data closely resemble historically observed data, though past work has identified undesirable consequences to applying quantile mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-mapping bias correction is applied, in the context of estimating high and low daily streamflows across the western United States. We vary the spatial scale at which quantile-mapping bias correction is performed from 2° (â€‰âˆŒâ€‰â€Ż200 km) to 1∕8° (â€‰âˆŒâ€‰â€Ż12 km) within a statistical downscaling procedure, and use the downscaled daily precipitation and temperature to drive a hydrology model. We find that little additional benefit is obtained, and some skill is degraded, when using quantile mapping at scales finer than approximately 0.5° (â€‰âˆŒâ€‰â€Ż50 km). This can provide guidance to those applying the quantile-mapping bias correction method for hydrologic impacts analysis

    Uncertainty analysis of 100-year flood maps under climate change scenarios

    Get PDF
    Floods are natural disastrous hazards that throughout history have had and still have major adverse impacts on people’s life, economy, and the environment. One of the useful tools for flood management are flood maps, which are developed to identify flood prone areas and can be used by insurance companies, local authorities and land planners for rescue and taking proper actions against flood hazards. Developing flood maps is often carried out by flood inundation modeling tools such as 2D hydrodynamic models. However, often flood maps are generated using a single deterministic model outcome without considering the uncertainty that arises from different sources and propagates through the modeling process. Moreover, the increasing number of flood events in the last decades combined with the effects of global climate change requires developing accurate and safe flood maps in which the uncertainty has been considered. Therefore, in this thesis the uncertainty of 100-year flood maps under 3 scenarios (present and future RCP4.5 and RCP8.5) is assessed through intensive Monte Carlo simulations. The uncertainty introduced by model input data namely, roughness coefficient, runoff coefficient and precipitation intensity (which incorporates three different sources of uncertainty: RCP scenario, climate model, and probability distribution function), is propagated through a surrogate hydrodynamic/hydrologic model developed based on a physical 2D model. The results obtained from this study challenge the use of deterministic flood maps and recommend using probabilistic approaches for developing safe and reliable flood maps. Furthermore, they show that the main source of uncertainty comes from the precipitation, namely the selected probability distribution compared to the selected RCP and climate model.publishedVersio

    Leveraging big satellite image and animal tracking data for characterizing large mammal habitats

    Get PDF
    Die zunehmende VerfĂŒgbarkeit von Satellitenfernerkundungs- und Wildtier-Telemetriedaten eröffnet neue Möglichkeiten fĂŒr eine verbesserte Überwachung von Wildtierhabitaten durch Habitatmodelle, doch fehlt es hĂ€ufig an geeigneten AnsĂ€tzen, um dieses Potenzial voll auszuschöpfen. Das ĂŒbergeordnete Ziel dieser Arbeit bestand in der Konzipierung und Weiterentwicklung von AnsĂ€tzen zur Nutzung des Potenzials großer Satellitenbild- und TelemetriedatensĂ€tze in Habitatmodellen. Am Beispiel von drei großen SĂ€ugetierarten in Europa (Eurasischer Luchs, Rothirsch und Reh) wurden AnsĂ€tze entwickelt, um (1) Habitatmodelle mit dem umfangreichsten global und frei verfĂŒgbaren Satellitenbildarchiv der Landsat-Satelliten zu verknĂŒpfen und (2) Wildtier-Telemetriedaten ĂŒber Wildtierpopulationen hinweg in großflĂ€chigen Analysen der Habitateignung und -nutzung zu integrieren. Die Ergebnisse dieser Arbeit belegen das enorme Potenzial von Landsat-basierten Variablen als PrĂ€diktoren in Habitatmodellen, die es ermöglichen von statischen Habitatbeschreibungen zu einem kontinuierlichen Monitoring von Habitatdynamiken ĂŒber Raum und Zeit ĂŒberzugehen. Die Ergebnisse meiner Forschung zeigen darĂŒber hinaus, wie wichtig es ist, die KontextabhĂ€ngigkeit der Lebensraumnutzung von Wildtieren in Habitatmodellen zu berĂŒcksichtigen, insbesondere auch bei der Integration von TelemetriedatensĂ€tzen ĂŒber Wildtierpopulationen hinweg. Die Ergebnisse dieser Dissertation liefern neue ökologische Erkenntnisse, welche zum Management und Schutz großer SĂ€ugetiere beitragen können. DarĂŒber hinaus zeigt meine Forschung, dass eine bessere Integration von Satellitenbild- und Telemetriedaten eine neue Generation von Habitatmodellen möglich macht, welche genauere Analysen und ein besseres VerstĂ€ndnis von Lebensraumdynamiken erlaubt und so BemĂŒhungen zum Schutz von Wildtieren unterstĂŒtzen kann.The growing availability of satellite remote sensing and animal tracking data opens new opportunities for an improved monitoring of wildlife habitats based on habitat models, yet suitable approaches for making full use of this potential are commonly lacking. The overarching goal of this thesis was to develop and advance approaches for harnessing the potential of big satellite image and animal tracking data in habitat models. Specifically, using three large mammal species in Europe as an example (Eurasian lynx, red deer, and roe deer), I developed approaches for (1) linking habitat models to the largest global and freely available satellite image record, the Landsat image archive, and (2) for integrating animal tracking datasets across wildlife populations in large-area assessments of habitat suitability and use. The results of this thesis demonstrate the enormous potential of Landsat-based variables as predictors in habitat models, allowing to move from static habitat descriptions to a continuous monitoring of habitat dynamics across space and time. In addition, my research underscores the importance of considering context-dependence in species’ habitat use in habitat models, particularly also when integrating tracking datasets across wildlife populations. The findings of this thesis provide novel ecological insights that help to inform the management and conservation of large mammals and more broadly, demonstrate that a better integration of satellite image and animal tracking data will allow for a new generation of habitat models improving our ability to monitor and understand habitat dynamics, thus supporting efforts to restore and protect wildlife across the globe

    ReAFFIRM: Real-time Assessment of Flash Flood Impacts: a Regional high-resolution Method

    Get PDF
    Flash floods evolve rapidly in time, which poses particular challenges to emergency managers. One way to support decision-making is to complement models that estimate the flash flood hazard (e.g. discharge or return period) with tools that directly translate the hazard into the expected socio-economic impacts. This paper presents a method named ReAFFIRM that uses gridded rainfall estimates to assess in real time the flash flood hazard and translate it into the corresponding impacts. In contrast to other studies that mainly focus on in- dividual river catchments, the approach allows for monitoring entire regions at high resolution. The method consists of the following three components: (i) an already existing hazard module that processes the rainfall into values of exceeded return period in the drainage network, (ii) a flood map module that employs the flood maps created within the EU Floods Directive to convert the return periods into the expected flooded areas and flood depths, and (iii) an impact assessment module that combines the flood depths with several layers of socio- economic exposure and vulnerability. Impacts are estimated in three quantitative categories: population in the flooded area, economic losses, and affected critical infrastructures. The performance of ReAFFIRM is shown by applying it in the region of Catalonia (NE Spain) for three significant flash flood events. The results show that the method is capable of identifying areas where the flash floods caused the highest impacts, while some locations affected by less significant impacts were missed. In the locations where the flood extent corresponded to flood observations, the assessments of the population in the flooded area and affected critical infrastructures seemed to perform reasonably well, whereas the economic losses were systematically overestimated. The effects of different sources of uncertainty have been discussed: from the estimation of the hazard to its translation into impacts, which highly depends on the quality of the employed datasets, and in particular on the quality of the rainfall inputs and the comprehensiveness of the flood maps.Peer ReviewedPostprint (published version

    Learning spatial correlations for Bayesian fusion in pipe thickness mapping

    Full text link
    © 2014 IEEE. Pipe thickness maps are used to assess the condition in pipelines. Thickness maps are a 2.5D representation similar to elevation maps in robotics. Probabilistic frameworks, however, have barely been used in this context. This paper presents a general approach for generating probabilistic maps from heterogeneous sensor data. The key idea is to learn the spatial correlation of a sensor through Gaussian Process models and use it as priors for Bayesian fusion. This approach is applied to the novel application of pipe thickness mapping. Data from a 3D laser scanner on the outer surface of the pipe and thickness measurements from a contact ultrasonic sensor are fused into a single thickness map with associated uncertainty. Moreover, a dedicated algorithm to model the ultrasonic sensor using kernel density estimation is also proposed. The overall approach is evaluated using the full 3D profile (outer and inner surfaces) of the pipe section as ground truth
    • 

    corecore