4,558 research outputs found

    Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers

    Get PDF
    open access articleAutonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%

    An identified LPV model for mobile robots navigation with audio features

    Get PDF
    Non-speech audio is becoming more attractive to be used as features to mobile robots navigation in industrial environments. In this paper authors present their advances in determining robot’s position in indoor spaces using as sound sources industrial machines. A novel model is build to locate the robot under different spaces. An identification process is used to obtain the LPV model and it is validated using a real robot. Some uncertainties due to the robot motion and other factors have been taken into account when determining the robot’s position and the obtained results demonstrate the validity of the model.Peer ReviewedPostprint (published version

    Research at the learning and vision mobile robotics group 2004-2005

    Get PDF
    Spanish Congress on Informatics (CEDI), 2005, Granada (España)This article presents the current trends on wheeled mobile robotics being pursued at the Learning and Vision Mobile Robotics Group (IRI). It includes an overview of recent results produced in our group in a wide range of areas, including robot localization, color invariance, segmentation, tracking, audio processing and object learning and recognition.This work was supported by projects: 'Supervised learning of industrial scenes by means of an active vision equipped mobile robot.' (J-00063), 'Integration of robust perception, learning, and navigation systems in mobile robotics' (J-0929).Peer Reviewe

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion
    • …
    corecore