7 research outputs found

    Handbook of Marine Model Organisms in Experimental Biology

    Get PDF
    "The importance of molecular approaches for comparative biology and the rapid development of new molecular tools is unprecedented. The extraordinary molecular progress belies the need for understanding the development and basic biology of whole organisms. Vigorous international efforts to train the next-generation of experimental biologists must combine both levels – next generation molecular approaches and traditional organismal biology. This book provides cutting-edge chapters regarding the growing list of marine model organisms. Access to and practical advice on these model organisms have become aconditio sine qua non for a modern education of advanced undergraduate students, graduate students and postdocs working on marine model systems. Model organisms are not only tools they are also bridges between fields – from behavior, development and physiology to functional genomics. Key Features Offers deep insights into cutting-edge model system science Provides in-depth overviews of all prominent marine model organisms Illustrates challenging experimental approaches to model system research Serves as a reference book also for next-generation functional genomics applications Fills an urgent need for students Related Titles Jarret, R. L. & K. McCluskey, eds. The Biological Resources of Model Organisms (ISBN 978-1-1382-9461-5) Kim, S.-K. Healthcare Using Marine Organisms (ISBN 978-1-1382-9538-4) Mudher, A. & T. Newman, eds. Drosophila: A Toolbox for the Study of Neurodegenerative Disease (ISBN 978-0-4154-1185-1) Green, S. L. The Laboratory Xenopus sp. (ISBN 978-1-4200-9109-0)

    Forensic Medicine

    Get PDF
    Forensic medicine is a continuously evolving science that is constantly being updated and improved, not only as a result of technological and scientific advances (which bring almost immediate repercussions) but also because of developments in the social and legal spheres. This book contains innovative perspectives and approaches to classic topics and problems in forensic medicine, offering reflections about the potential and limits of emerging areas in forensic expert research; it transmits the experience of some countries in the domain of cutting-edge expert intervention, and shows how research in other fields of knowledge may have very relevant implications for this practice

    Diagnostic and prognostic biomarkers of malignant pleural mesothelioma

    Get PDF
    Malignant Pleural Mesothelioma (MPM) is an aggressive intrathoracic malignancy with an overall poor prognosis. MPM is associated with asbestos exposure but has a long latency period between exposure and disease development. Incidence of MPM in the UK is therefore still rising, predicted to reach a peak in 2020. The majority of patients with MPM present with breathlessness, frequently due to a pleural effusion and/or chest pain. Diagnosis of MPM can be difficult. Radiological detection of early stage MPM in particular can be challenging, as pleural tumour, nodularity or significant pleural thickening may not be evident. Diagnosis is further complicated by the low yield of pleural fluid cytology examination in MPM and pleural biopsy is therefore usually required to allow definitive diagnosis. This can be achieved under image guidance, at surgical thoracoscopy or at local anaesthetic thoracoscopy (LAT). A significant number of patients are either elderly or have co-morbidity precluding general anaesthesia and surgical thoracoscopy. Image-guided pleural biopsy is not always feasible, particularly in the absence of significant pleural thickening. LAT remains a limited resource in the UK. A non-invasive biomarker of MPM, which could be performed early in the patient’s presentation, and that could be available to most hospitals, would therefore be a major clinical advance, allowing clinicians to direct appropriate patients to specialist centres with access to LAT and specialist MDT input where MPM appears likely. There have been several potential blood biomarkers identified in the mesothelioma literature, including the most widely studied, Mesothelin, and more recently Fibulin-3 and SOMAscan™. Unfortunately study results have been variably limited by retrospective study design, inconsistent sampling time points, inconsistent results and lack of external validation, therefore despite initial promising results, none of these biomarkers have entered routine clinical practice for diagnosis. Similarly, utility of imaging biomarkers such as perfusion Computed Tomography (CT), Positron Emission Tomography (PET) and Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) has been limited by high radiation dose, limited availability, and requirement for bulky (and therefore late stage) disease for assessment respectively. In chapter 2, study design, recruitment and preliminary results of the DIAPHRAGM (Diagnostic and Prognostic Biomarkers in the Rational Assessment of Mesothelioma) study are reported. A prospective, multi-centre study was designed, recruiting patients with suspected pleural malignancy (SPM) at initial presentation to secondary care services, from a mixture of academic and more clinical units in the UK and Ireland, in addition to asbestos-exposed control subjects. In one of the largest biomarker studies in mesothelioma to date, 639 patients with SPM and 113 asbestos-exposed control subjects were recruited over three years. Data cleaning is being finalised by the Cancer Research UK Clinical Trials Unit Glasgow at the time of writing. Preliminary results reveal that 26% (n=154) patients recruited to the SPM cohort were diagnosed with MPM, 33% (n=209) had secondary pleural malignancy and 34% (n=218) were diagnosed with benign pleural disease. A final diagnosis is awaited in 7% (n=47) at the time of writing. SOMAscan™ and Fibulin-3 biomarker analyses are ongoing and DIAPHRAGM will definitively answer the question of diagnostic utility of these blood biomarkers in routine clinical practice, in a ‘real-life’ MPM population, relative to that of Mesothelin. In chapter 3, contrast-enhanced MRI was performed in patients with suspected MPM and a novel MRI biomarker of pleural malignancy defined (Early Contrast Enhancement – ECE). ECE was defined as a peak in pleural signal intensity at or before 4.5 minutes after intravenous Gadobutrol administration. ECE assessment was successfully performed in all patients who underwent contrast-enhanced MRI. This included patients with pleural thickening 0.533AU/s), indicative of high tumour vascularity, was associated with poor median overall survival (12 months vs. 20 months, p=0.047). Staging of MPM represents an additional challenge to clinicians. This is due to the complex morphology and often rind-like growth pattern of MPM. In addition, delineation of pleural disease from adjacent structures such as intercostal muscle and diaphragm can be difficult to assess, particularly at CT, which is the most commonly used imaging modality for diagnostic and staging assessment in MPM. Current clinical staging frequently underestimates extent of disease, with a significant proportion of patients being upstaged at time of surgery, and is limited by high inter-observer variability. Recent studies have reported the prognostic significance of CT-derived tumour volume; however, many of these studies have been limited by the laborious or complex nature of tumour segmentation, significant inter-observer variability or challenges encountered in separating pleural tumour from adjacent structures, which are often of similar density. MRI is superior to CT in the detection of invasion of the chest wall and diaphragm in MPM. In Chapter 4, MRI was used to quantitatively assess pleural tumour volume in 31 patients with MPM using novel semi-automated segmentation methodology. Four different segmentation methodologies, using Myrian® segmentation software were developed and examined. Optimum methodology was defined, based on the accuracy of volume estimates of an MRI phantom, visual-based analysis, intra-observer agreement and analysis time. Using the optimum methodology, there was acceptable error around the MRI phantom volume (3.6%), a reasonable analysis time (approximately 14 minutes), good intra-observer agreement (intra-class correlation coefficient (ICC) 0.875) and excellent inter-observer agreement (ICC 0.962). Patients with a high MRI-estimated tumour volume (≥300cm3) had a significantly poorer median overall survival (8.5 months vs. 20 months) and was a statistically significant prognostic variable on univariate (HR 2.273 (95% CI 1.162 – 4.446), p=0.016) and multi-variate Cox proportional hazards model (HR 2.114 (95% CI 1.046 – 4.270), p=0.037)

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore