1,021 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    A Fast Modal Space Transform for Robust Nonrigid Shape Retrieval

    Get PDF
    Nonrigid or deformable 3D objects are common in many application domains. Retrieval of such objects in large databases based on shape similarity is still a challenging problem. In this paper, we take advantages of functional operators as characterizations of shape deformation, and further propose a framework to design novel shape signatures for encoding nonrigid geometries. Our approach constructs a context-aware integral kernel operator on a manifold, then applies modal analysis to map this operator into a low-frequency functional representation, called fast functional transform, and finally computes its spectrum as the shape signature. In a nutshell, our method is fast, isometry-invariant, discriminative, smooth and numerically stable with respect to multiple types of perturbations. Experimental results demonstrate that our new shape signature for nonrigid objects can outperform all methods participating in the nonrigid track of the SHREC’11 contest. It is also the second best performing method in the real human model track of SHREC’14.postprin

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    Curvature-based spectral signatures for non-rigid shape retrieval

    Get PDF
    The geometric properties of descriptors derived from the diusion geometry family have many valuable properties for shape analysis. These descriptors, also known as diusion distances, use the eigenvalues and eigenfunctions of the Laplace-Beltrami operator to construct invariant metrics about the shape. Although they are invariant to many transformations, non-rigid deformations still modify the shape spectrum. In this paper, we propose a shape descriptor framework based on a Lagrangian formulation of dynamics on the surface of the object. We show how our framework can be applied to non-rigid shape retrieval, once it benefits from the analysis and the automatic identification of shape joints, using a curvature-based scheme to identify these regions. We also propose modifications to the Improved Wave Kernel Signature in order to keep descriptors more stable against non-rigid deformations. We compare our spectral components with the classic ones and our spectral framework with state-of-the-art non-rigid signatures on traditional benchmarks, showing that our shape spectra is more stable and discriminative and clearly outperforms other descriptors in the SHREC’10, SHREC’11 and SHREC’17 benchmarks

    3D Shape Descriptor-Based Facial Landmark Detection: A Machine Learning Approach

    Get PDF
    Facial landmark detection on 3D human faces has had numerous applications in the literature such as establishing point-to-point correspondence between 3D face models which is itself a key step for a wide range of applications like 3D face detection and authentication, matching, reconstruction, and retrieval, to name a few. Two groups of approaches, namely knowledge-driven and data-driven approaches, have been employed for facial landmarking in the literature. Knowledge-driven techniques are the traditional approaches that have been widely used to locate landmarks on human faces. In these approaches, a user with sucient knowledge and experience usually denes features to be extracted as the landmarks. Data-driven techniques, on the other hand, take advantage of machine learning algorithms to detect prominent features on 3D face models. Besides the key advantages, each category of these techniques has limitations that prevent it from generating the most reliable results. In this work we propose to combine the strengths of the two approaches to detect facial landmarks in a more ecient and precise way. The suggested approach consists of two phases. First, some salient features of the faces are extracted using expert systems. Afterwards, these points are used as the initial control points in the well-known Thin Plate Spline (TPS) technique to deform the input face towards a reference face model. Second, by exploring and utilizing multiple machine learning algorithms another group of landmarks are extracted. The data-driven landmark detection step is performed in a supervised manner providing an information-rich set of training data in which a set of local descriptors are computed and used to train the algorithm. We then, use the detected landmarks for establishing point-to-point correspondence between the 3D human faces mainly using an improved version of Iterative Closest Point (ICP) algorithms. Furthermore, we propose to use the detected landmarks for 3D face matching applications

    Shape Retrieval Methods for Architectural 3D Models

    Get PDF
    This thesis introduces new methods for content-based retrieval of architecture-related 3D models. We thereby consider two different overall types of architectural 3D models. The first type consists of context objects that are used for detailed design and decoration of 3D building model drafts. This includes e.g. furnishing for interior design or barriers and fences for forming the exterior environment. The second type consists of actual building models. To enable efficient content-based retrieval for both model types that is tailored to the user requirements of the architectural domain, type-specific algorithms must be developed. On the one hand, context objects like furnishing that provide similar functions (e.g. seating furniture) often share a similar shape. Nevertheless they might be considered to belong to different object classes from an architectural point of view (e.g. armchair, elbow chair, swivel chair). The differentiation is due to small geometric details and is sometimes only obvious to an expert from the domain. Building models on the other hand are often distinguished according to the underlying floor- and room plans. Topological floor plan properties for example serve as a starting point for telling apart residential and commercial buildings. The first contribution of this thesis is a new meta descriptor for 3D retrieval that combines different types of local shape descriptors using a supervised learning approach. The approach enables the differentiation of object classes according to small geometric details and at the same time integrates expert knowledge from the field of architecture. We evaluate our approach using a database containing arbitrary 3D models as well as on one that only consists of models from the architectural domain. We then further extend our approach by adding a sophisticated shape descriptor localization strategy. Additionally, we exploit knowledge about the spatial relationship of object components to further enhance the retrieval performance. In the second part of the thesis we introduce attributed room connectivity graphs (RCGs) as a means to characterize a 3D building model according to the structure of its underlying floor plans. We first describe how RCGs are inferred from a given building model and discuss how substructures of this graph can be queried efficiently. We then introduce a new descriptor denoted as Bag-of-Attributed-Subgraphs that transforms attributed graphs into a vector-based representation using subgraph embeddings. We finally evaluate the retrieval performance of this new method on a database consisting of building models with different floor plan types. All methods presented in this thesis are aimed at an as automated as possible workflow for indexing and retrieval such that only minimum human interaction is required. Accordingly, only polygon soups are required as inputs which do not need to be manually repaired or structured. Human effort is only needed for offline groundtruth generation to enable supervised learning and for providing information about the orientation of building models and the unit of measurement used for modeling

    Automatic Landmarking for Non-cooperative 3D Face Recognition

    Get PDF
    This thesis describes a new framework for 3D surface landmarking and evaluates its performance for feature localisation on human faces. This framework has two main parts that can be designed and optimised independently. The first one is a keypoint detection system that returns positions of interest for a given mesh surface by using a learnt dictionary of local shapes. The second one is a labelling system, using model fitting approaches that establish a one-to-one correspondence between the set of unlabelled input points and a learnt representation of the class of object to detect. Our keypoint detection system returns local maxima over score maps that are generated from an arbitrarily large set of local shape descriptors. The distributions of these descriptors (scalars or histograms) are learnt for known landmark positions on a training dataset in order to generate a model. The similarity between the input descriptor value for a given vertex and a model shape is used as a descriptor-related score. Our labelling system can make use of both hypergraph matching techniques and rigid registration techniques to reduce the ambiguity attached to unlabelled input keypoints for which a list of model landmark candidates have been seeded. The soft matching techniques use multi-attributed hyperedges to reduce ambiguity, while the registration techniques use scale-adapted rigid transformation computed from 3 or more points in order to obtain one-to-one correspondences. Our final system achieves better or comparable (depending on the metric) results than the state-of-the-art while being more generic. It does not require pre-processing such as cropping, spike removal and hole filling and is more robust to occlusion of salient local regions, such as those near the nose tip and inner eye corners. It is also fully pose invariant and can be used with kinds of objects other than faces, provided that labelled training data is available
    • …
    corecore