158 research outputs found

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Registration and Analysis of Vascular Images

    Get PDF
    We have developed a method for rigidly aligning images of tubes. This paper presents an evaluation of the consistency of that method for three-dimensional images of human vasculature. Vascular images may contain alignment ambiguities, poorly corresponding vascular networks, and non-rigid deformations, yet the Monte Carlo experiments presented in this paper show that our method provides registrations with sub-voxel consistency in less than one minute. Our registration method builds on the principals of our ridges-and-widths tube modeling work; this registration method operates by aligning models of the tubes in a source image with subsequent target images. The registration method’s consistency results from incorporate multi-scale ridge and width measures into the model-image match metric. The method’s speed comes from the use of coarse-to-fine registration strategies that are directly enabled by our tube models and the model-image match metric. In this paper we also show that the method’s insensitivity to local, non-rigid deformations enables the visualization and quantification of the effects of such deformations

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de décès en Amérique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant épidémie d’obésité entraînée par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de conséquences pour les personnes affectées, mais aussi sur le système de santé. La principale cause de morbidité et de mortalité chez ces patients est l’athérosclérose, une accumulation de plaque à l’intérieur des vaisseaux sanguins à hautes pressions telles que les artères coronaires. Les lésions athérosclérotiques peuvent entraîner l’ischémie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mène souvent à de graves conséquences telles qu’un infarctus. Outre les problèmes liés à la sténose, les parois artérielles des régions criblées de plaque augmentent la rigidité des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pédiatrique, la pathologie cardiovasculaire acquise la plus fréquente est la maladie de Kawasaki. Il s’agit d’une vasculite aigüe pouvant affecter l’intégrité structurale des parois des artères coronaires et mener à la formation d’anévrismes. Dans certains cas, ceux-ci entravent l’hémodynamie artérielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectués à l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en séries suite à l’infusion artérielle d’un agent de contraste. Ces images révèlent la lumière des vaisseaux sanguins et la présence de lésions potentiellement pathologiques, s’il y a lieu. Parce que les séries acquises contiennent de l’information très dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et déplacement d’organes), le clinicien base généralement son interprétation sur une seule image angiographique où des mesures géométriques sont effectuées manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit fréquemment utilisé partout dans le monde et souvent considéré comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalité d’imagerie est malheureusement très limitante en termes de spécification géométrique des différentes régions pathologiques. En effet, la structure tridimensionnelle des sténoses et des anévrismes ne peut pas être pleinement appréciée en 2D car les caractéristiques observées varient selon la configuration angulaire de l’imageur. De plus, la présence de lésions affectant les artères coronaires peut ne pas refléter la véritable santé du myocarde, car des mécanismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o

    Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study

    Get PDF
    In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide information on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)-based algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral artery stroke. These results were compared to volumes reported by widely used CT perfusion-based RAPID software (IschemaView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44-0.63), precision 0.69 (0.60-0.76), and Sorensen-Dice coefficient 0.61 (0.52-0.67). Stroke/nonstroke differentiation accuracy 0.88 (0.81-0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately strong correlation to RAPID-reported T-max > 10 s volumes (Pearson's r = 0.76 (0.58-0.86)). The results suggest that detecting anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with physiological knowledge to rule out false positives.Peer reviewe
    • …
    corecore