521 research outputs found

    Enhancing retinal images by nonlinear registration

    Full text link
    Being able to image the human retina in high resolution opens a new era in many important fields, such as pharmacological research for retinal diseases, researches in human cognition, nervous system, metabolism and blood stream, to name a few. In this paper, we propose to share the knowledge acquired in the fields of optics and imaging in solar astrophysics in order to improve the retinal imaging at very high spatial resolution in the perspective to perform a medical diagnosis. The main purpose would be to assist health care practitioners by enhancing retinal images and detect abnormal features. We apply a nonlinear registration method using local correlation tracking to increase the field of view and follow structure evolutions using correlation techniques borrowed from solar astronomy technique expertise. Another purpose is to define the tracer of movements after analyzing local correlations to follow the proper motions of an image from one moment to another, such as changes in optical flows that would be of high interest in a medical diagnosis.Comment: 21 pages, 7 figures, submitted to Optics Communication

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Improving statistical power of glaucoma clinical trials using an ensemble of cyclical generative adversarial networks

    Get PDF
    Albeit spectral-domain OCT (SDOCT) is now in clinical use for glaucoma management, published clinical trials relied on time-domain OCT (TDOCT) which is characterized by low signal-to-noise ratio, leading to low statistical power. For this reason, such trials require large numbers of patients observed over long intervals and become more costly. We propose a probabilistic ensemble model and a cycle-consistent perceptual loss for improving the statistical power of trials utilizing TDOCT. TDOCT are converted to synthesized SDOCT and segmented via Bayesian fusion of an ensemble of GANs. The final retinal nerve fibre layer segmentation is obtained automatically on an averaged synthesized image using label fusion. We benchmark different networks using i) GAN, ii) Wasserstein GAN (WGAN) (iii) GAN + perceptual loss and iv) WGAN + perceptual loss. For training and validation, an independent dataset is used, while testing is performed on the UK Glaucoma Treatment Study (UKGTS), i.e. a TDOCT-based trial. We quantify the statistical power of the measurements obtained with our method, as compared with those derived from the original TDOCT. The results provide new insights into the UKGTS, showing a significantly better separation between treatment arms, while improving the statistical power of TDOCT on par with visual field measurements

    OCT Signal Enhancement with Deep Learning

    Get PDF
    PURPOSE: To establish whether deep learning methods are able to improve the signal-to-noise ratio of time-domain (TD) optical coherence tomography (OCT) images to approach that of spectral-domain (SD) OCT. DESIGN: Method agreement study and progression-detection in a randomized, double-masked, placebo-controlled, multi-centre trial for open-angle glaucoma (OAG) [UK Glaucoma Treatment Study (UKGTS)]. PARTICIPANTS: Cohort for training and validation: 77 stable OAG participants with TDOCT and SDOCT imaging at up to 11 visits within 3 months. Cohort for testing: 284 newly-diagnosed OAG patients with TDOCT from a cohort of 516 recruited at 10 UK centres between 2007 and 2010. METHODS: An ensemble of generative adversarial networks (GANs) was trained on TDOCT and SDOCT image pairs from the training dataset and applied to TDOCT images from the testing dataset. TDOCT were converted to synthesized SDOCT images and segmented via Bayesian fusion on the output of the GANs. MAIN OUTCOME MEASURES: 1) Bland-Altman analysis to assess agreement between TDOCT and synthesized SDOCT average retinal nerve fibre layer thickness (RNFLT) measurements and the SDOCT RNFLT. 2) Analysis of the distribution of the rates of RNFLT change in TDOCT and synthesized SDOCT in the two treatments arms of the UKGTS was compared. A Cox model for predictors of time-to-incident VF progression was computed with the TDOCT and the synthesized SDOCT. RESULTS: The 95% limits of agreement between TDOCT and SDOCT were [26.64, -22.95], between synthesized SDOCT and SDOCT were [8.11, -6.73], and between SDOCT and SDOCT were [4.16, -4.04]. The mean difference in the rate of RNFL change between UKGTS treatment and placebo arms with TDOCT was 0.24 (p=0.11) and with synthesized SDOCT was 0.43 (p=0.0017). The hazard ratio for RNFLT slope in Cox regression modeling for time to incident VF progression was 1.09 (95% CI 1.02 to 1.21) (p=0.035) for TDOCT and 1.24 (95% CI 1.08 to 1.39) (p=0.011) for synthesized SDOCT. CONCLUSIONS: Image enhancement significantly improved the agreement of TDOCT RNFLT measurements with SDOCT RNFLT measurements. The difference, and its significance, in rates of RNFLT change in the UKGTS treatment arms was enhanced and RNFLT change became a stronger predictor of VF progression

    Deep learning-based improvement for the outcomes of glaucoma clinical trials

    Get PDF
    Glaucoma is the leading cause of irreversible blindness worldwide. It is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon loss, probably as a consequence of damage at the optic disc, causes a loss of vision, predominantly affecting the mid-peripheral visual field (VF). Glaucoma results in a decrease in vision-related quality of life and, therefore, early detection and evaluation of disease progression rates is crucial in order to assess the risk of functional impairment and to establish sound treatment strategies. The aim of my research is to improve glaucoma diagnosis by enhancing state of the art analyses of glaucoma clinical trial outcomes using advanced analytical methods. This knowledge would also help better design and analyse clinical trials, providing evidence for re-evaluating existing medications, facilitating diagnosis and suggesting novel disease management. To facilitate my objective methodology, this thesis provides the following contributions: (i) I developed deep learning-based super-resolution (SR) techniques for optical coherence tomography (OCT) image enhancement and demonstrated that using super-resolved images improves the statistical power of clinical trials, (ii) I developed a deep learning algorithm for segmentation of retinal OCT images, showing that the methodology consistently produces more accurate segmentations than state-of-the-art networks, (iii) I developed a deep learning framework for refining the relationship between structural and functional measurements and demonstrated that the mapping is significantly improved over previous techniques, iv) I developed a probabilistic method and demonstrated that glaucomatous disc haemorrhages are influenced by a possible systemic factor that makes both eyes bleed simultaneously. v) I recalculated VF slopes, using the retinal never fiber layer thickness (RNFLT) from the super-resolved OCT as a Bayesian prior and demonstrated that use of VF rates with the Bayesian prior as the outcome measure leads to a reduction in the sample size required to distinguish treatment arms in a clinical trial

    Diffusion Models for Medical Image Analysis: A Comprehensive Survey

    Full text link
    Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.Comment: Second revision: including more papers and further discussion
    corecore