6,363 research outputs found

    Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    Get PDF
    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects

    Global alignment of deformable objects captured by a single RGB-D camera

    Get PDF
    We present a novel global registration method for deformable objects captured using a single RGB-D camera. Our algorithm allows objects to undergo large non-rigid deformations, and achieves high quality results without constraining the actor's pose or camera motion. We compute the deformations of all the scans simultaneously by optimizing a global alignment problem to avoid the well-known loop closure problem, and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed model. To attack large scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. Experimental results demonstrate that the proposed method obtains better results than the state-of-the-art methods

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation

    Full text link
    Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem in robotics. We present a learning-based system where a robot takes as input a sequence of images of a human manipulating a rope from an initial to goal configuration, and outputs a sequence of actions that can reproduce the human demonstration, using only monocular images as input. To perform this task, the robot learns a pixel-level inverse dynamics model of rope manipulation directly from images in a self-supervised manner, using about 60K interactions with the rope collected autonomously by the robot. The human demonstration provides a high-level plan of what to do and the low-level inverse model is used to execute the plan. We show that by combining the high and low-level plans, the robot can successfully manipulate a rope into a variety of target shapes using only a sequence of human-provided images for direction.Comment: 8 pages, accepted to International Conference on Robotics and Automation (ICRA) 201

    Capturing Deformations of Interacting Non-rigid Objects Using RGB-D Data

    Get PDF
    International audienceThis paper presents a method for tracking multiple interacting deformable objects undergoing rigid motions, elastic deformations and contacts, using image and point cloud data provided by an RGB-D sensor. A joint registration framework is proposed, based on physical Finite Element Method (FEM) elastic and interaction models. It first relies on a visual segmentation of the considered objects in the RGB images. The different segmented point clouds are then processed to estimate rigid transformations with on an ICP algorithm, and to determine geometrical point-to-point correspondences with the meshes. External forces resulting from these correspondences and between the current and the rigidly transformed mesh can then be derived. It provides both non-rigid and rigid data cues. A classical collision detection and response model is also integrated, giving contact forces between the objects. The deformations of the objects are estimated by solving a dynamic system balancing these external and contact forces with the internal or regularization forces computed through the FEM elastic model. This approach has been here tested on different scenarios involving two or three interacting deformable objects of various shapes, with promising results
    corecore