1,862 research outputs found

    Non-redundant random generation from weighted context-free languages

    Get PDF
    International audienceWe address the non-redundant random generation of k words of length n from a context-free language. Additionally, we want to avoid a prede¯ned set of words. We study the limits of a rejection-based approach, whose time complexity is shown to grow exponentially in k in some cases. We propose an alternative recursive algorithm, whose careful implementation allows for a non-redundant generation of k words of size n in O(kn log n) arithmetic operations after the precomputation of O(n) numbers. The overall complexity is therefore dominated by the generation of k words, and the non-redundancy comes at a negligible cost

    Probabilistic grammatical model of protein language and its application to helix-helix contact site classification

    Get PDF
    BACKGROUND: Hidden Markov Models power many state‐of‐the‐art tools in the field of protein bioinformatics. While excelling in their tasks, these methods of protein analysis do not convey directly information on medium‐ and long‐range residue‐residue interactions. This requires an expressive power of at least context‐free grammars. However, application of more powerful grammar formalisms to protein analysis has been surprisingly limited. RESULTS: In this work, we present a probabilistic grammatical framework for problem‐specific protein languages and apply it to classification of transmembrane helix‐helix pairs configurations. The core of the model consists of a probabilistic context‐free grammar, automatically inferred by a genetic algorithm from only a generic set of expert‐based rules and positive training samples. The model was applied to produce sequence based descriptors of four classes of transmembrane helix‐helix contact site configurations. The highest performance of the classifiers reached AUCROC of 0.70. The analysis of grammar parse trees revealed the ability of representing structural features of helix‐helix contact sites. CONCLUSIONS: We demonstrated that our probabilistic context‐free framework for analysis of protein sequences outperforms the state of the art in the task of helix‐helix contact site classification. However, this is achieved without necessarily requiring modeling long range dependencies between interacting residues. A significant feature of our approach is that grammar rules and parse trees are human‐readable. Thus they could provide biologically meaningful information for molecular biologists

    Statistical relational learning of semantic models and grammar rules for 3D building reconstruction from 3D point clouds

    Get PDF
    Formal grammars are well suited for the estimation of models with an a-priori unknown number of parameters such as buildings and have proven their worth for 3D modeling and reconstruction of cities. However, the generation and design of corresponding grammar rules is a laborious task and relies on expert knowledge. This thesis presents novel approaches for the reduction of this effort using advanced machine learning methods resulting in automatically learned sophisticated grammar rules. Indeed, the learning of a wide range of sophisticated rules, that reflect the variety and complexity, is a challenging task. This is especially the case if a simultaneous machine learning of building structures and the underlying aggregation hierarchies as well as the building parameters and the constraints among them for a semantic interpretation is expected. Thus, in this thesis, an incremental approach is followed. It separates the structure learning from the parameter distribution learning of building parts. Moreover, the so far procedural approaches with formal grammars are mostly rather convenient for the generation of virtual city models than for the reconstruction of existing buildings. To this end, Inductive Logic Programming (ILP) techniques are transferred and applied for the first time in the field of 3D building modeling. This enables the automatic learning of declarative logic programs, which are equivalent to attribute grammars and separate the representation of buildings and their parts from the reconstruction task. A stepwise bottom-up learning, starting from the smallest atomic features of a building part together with the semantic, topological and geometric constraints, is a key to a successful learning of a whole building part. Only few examples are sufficient to learn from precise as well as noisy observations. The learning from uncertain data is realized using probability density functions, decision trees and uncertain projective geometry. This enables the handling and modeling of uncertain topology and geometric reasoning taking noise into consideration. The uncertainty of models itself is also considered. Therefore, a novel method is developed for the learning of Weighted Attribute Context-Free Grammar (WACFG). On the one hand, the structure learning of façades – context-free part of the Grammar – is performed based on annotated derivation trees using specific Support Vector Machines (SVMs). The latter are able to derive probabilistic models from structured data and to predict a most likely tree regarding to given observations. On the other hand, to the best of my knowledge, Statistical Relational Learning (SRL), especially Markov Logic Networks (MLNs), are applied for the first time in order to learn building part (shape and location) parameters as well as the constraints among these parts. The use of SRL enables to take profit from the elegant logical relational description and to benefit from the efficiency of statistical inference methods. In order to model latent prior knowledge and exploit the architectural regularities of buildings, a novel method is developed for the automatic identification of translational as well as axial symmetries. For symmetry identification a supervised machine learning approach is followed based on an SVM classifier. Building upon the classification results, algorithms are designed for the representation of symmetries using context-free grammars from authoritative building footprints. In all steps the machine learning is performed based on real- world data such as 3D point clouds and building footprints. The handling with uncertainty and occlusions is assured. The presented methods have been successfully applied on real data. The belonging classification and reconstruction results are shown.Statistisches relationales Lernen von semantischen Modellen und Grammatikregeln für 3D Gebäuderekonstruktion aus 3D Punktwolken Formale Grammatiken eignen sich sehr gut zur Schätzung von Modellen mit a-priori unbekannter Anzahl von Parametern und haben sich daher als guter Ansatz zur Rekonstruktion von Städten mittels 3D Stadtmodellen bewährt. Der Entwurf und die Erstellung der dazugehörigen Grammatikregeln benötigt jedoch Expertenwissen und ist mit großem Aufwand verbunden. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, die diesen Aufwand unter Zuhilfenahme von leistungsfähigen Techniken des maschinellen Lernens reduzieren und automatisches Lernen von Regeln ermöglichen. Das Lernen umfangreicher Grammatiken, die die Vielfalt und Komplexität der Gebäude und ihrer Bestandteile widerspiegeln, stellt eine herausfordernde Aufgabe dar. Dies ist insbesondere der Fall, wenn zur semantischen Interpretation sowohl das Lernen der Strukturen und Aggregationshierarchien als auch von Parametern der zu lernenden Objekte gleichzeitig statt finden soll. Aus diesem Grund wird hier ein inkrementeller Ansatz verfolgt, der das Lernen der Strukturen vom Lernen der Parameterverteilungen und Constraints zielführend voneinander trennt. Existierende prozedurale Ansätze mit formalen Grammatiken sind eher zur Generierung von synthetischen Stadtmodellen geeignet, aber nur bedingt zur Rekonstruktion existierender Gebäude nutzbar. Hierfür werden in dieser Schrift Techniken der Induktiven Logischen Programmierung (ILP) zum ersten Mal auf den Bereich der 3D Gebäudemodellierung übertragen. Dies führt zum Lernen deklarativer logischer Programme, die hinsichtlich ihrer Ausdrucksstärke mit attributierten Grammatiken gleichzusetzen sind und die Repräsentation der Gebäude von der Rekonstruktionsaufgabe trennen. Das Lernen von zuerst disaggregierten atomaren Bestandteilen sowie der semantischen, topologischen und geometrischen Beziehungen erwies sich als Schlüssel zum Lernen der Gesamtheit eines Gebäudeteils. Das Lernen erfolgte auf Basis einiger weniger sowohl präziser als auch verrauschter Beispielmodelle. Um das Letztere zu ermöglichen, wurde auf Wahrscheinlichkeitsdichteverteilungen, Entscheidungsbäumen und unsichere projektive Geometrie zurückgegriffen. Dies erlaubte den Umgang mit und die Modellierung von unsicheren topologischen Relationen sowie unscharfer Geometrie. Um die Unsicherheit der Modelle selbst abbilden zu können, wurde ein Verfahren zum Lernen Gewichteter Attributierter Kontextfreier Grammatiken (Weighted Attributed Context-Free Grammars, WACFG) entwickelt. Zum einen erfolgte das Lernen der Struktur von Fassaden –kontextfreier Anteil der Grammatik – aus annotierten Herleitungsbäumen mittels spezifischer Support Vektor Maschinen (SVMs), die in der Lage sind, probabilistische Modelle aus strukturierten Daten abzuleiten und zu prädizieren. Zum anderen wurden nach meinem besten Wissen Methoden des statistischen relationalen Lernens (SRL), insbesondere Markov Logic Networks (MLNs), erstmalig zum Lernen von Parametern von Gebäuden sowie von bestehenden Relationen und Constraints zwischen ihren Bestandteilen eingesetzt. Das Nutzen von SRL erlaubt es, die eleganten relationalen Beschreibungen der Logik mit effizienten Methoden der statistischen Inferenz zu verbinden. Um latentes Vorwissen zu modellieren und architekturelle Regelmäßigkeiten auszunutzen, ist ein Verfahren zur automatischen Erkennung von Translations- und Spiegelsymmetrien und deren Repräsentation mittels kontextfreier Grammatiken entwickelt worden. Hierfür wurde mittels überwachtem Lernen ein SVM-Klassifikator entwickelt und implementiert. Basierend darauf wurden Algorithmen zur Induktion von Grammatikregeln aus Grundrissdaten entworfen

    Optimization of feature learning through grammar-guided genetic programming

    Get PDF
    Tese de Mestrado, Ciência de Dados, 2022, Universidade de Lisboa, Faculdade de CiênciasMachine Learning (ML) is becoming more prominent in daily life. A key aspect in ML is Feature Engineering (FE), which can entail a long and tedious process. Therefore, the automation of FE, known as Feature Learning (FL), can be highly rewarding. FL methods need not only have high prediction performance, but should also produce interpretable methods. Many current high-performance ML methods that can be considered FL methods, such as Neural Networks and PCA, lack interpretability. A popular ML used for FL that produces interpretable models is Genetic Programming (GP), with multiple successful applications and methods like M3GP. In this thesis, I present two new GP-based FL methods, namely M3GP with Domain Knowledge (DK-M3GP) and DK-M3GP with feature Aggregation (DKA-M3GP). Both use grammars to enhance the search process of GP, in a method called GrammarGuided GP (GGGP). DK-M3GP uses grammars to incorporate domain knowledge in the search process. In particular, I use DK-M3GP to define what solutions are humanly valid, in this case by disallowing operating arithmetically on categorical features. For example, the multiplication of the postal code of an individual with their wage is not deemed sensible and thus disallowed. In DKA-M3GP, I use grammars to include a feature aggregation method in the search space. This method can be used for time series and panel datasets, to aggregate the target value of historic data based on a known feature value of a new data point. For example, if I want to predict the number of bikes seen daily in a city, it is interesting to know how many were seen on average in the last week. Furthermore, DKA-M3GP allows for filtering the aggregation based on some other feature value. For example, we can include the average number of bikes seen on past Sundays. I evaluated my FL methods for two ML problems in two environments. First, I evaluate the independent FL process, and, after that, I evaluate the FL steps within four ML pipelines. Independently, DK-M3GP shows a two-fold advantage over normal M3GP; better interpretability in general, and higher prediction performance for one problem. DKA-M3GP has a much better prediction performance than M3GP for one problem, and a slightly better one for the other. Furthermore, within the ML pipelines it performed well in one of two problems. Overall, my methods show potential for FL. Both methods are implemented in Genetic Engine an individual-representation-independent GGGP framework, created as part of this thesis. Genetic Engine is completely implemented in Python and shows competing performance with the mature GGGP framework PonyGE2.A Inteligência Artificial (IA) e o seu subconjunto de Aprendizagem Automática (AA) estão a tornarse mais importantes para nossas vidas a cada dia que passa. Ambas as áreas estão presentes no nosso dia a dia em diversas aplicações como o reconhecimento automático de voz, os carros autónomos, ou o reconhecimento de imagens e deteção de objetos. A AA foi aplicada com sucesso em muitas áreas, como saúde, finanças e marketing. Num contexto supervisionado, os modelos de AA são treinados com dados e, posteriormente, são usados para prever o comportamento de dados futuros. A combinação de etapas realizadas para construir um modelo de AA, totalmente treinado e avaliado, é chamada um AA pipeline, ou simplesmente pipeline. Todos os pipelines seguem etapas obrigatórias, nomeadamente a recuperação, limpeza e manipulação dos dados, a seleção e construção de features, a seleção do modelo e a otimização dos seus parâmetros, finalmente, a avaliação do modelo. A construção de AA pipelines é uma tarefa desafiante, com especificidades que dependem do domínio do problema. Existem desafios do lado do design, otimização de hiperparâmetros, assim como no lado da implementação. No desenho de pipelines, as escolhas devem ser feitas em relação aos componentes a utilizar e à sua ordem. Mesmo para especialistas em AA, desenhar pipelines é uma tarefa entediante . As escolhas de design exigem experiência em AA e um conhecimento do domínio do problema, o que torna a construção do pipeline num processo intensivo de recursos. Após o desenho do pipeline, os parâmetros do mesmo devem ser otimizados para melhorar o seu desempenho. A otimização de parâmetros, geralmente, requer a execução e avaliação sequencial do pipeline, envolvendo altos custos. No lado da implementação, os programadores podem introduzir bugs durante o processo de desenvolvimento. Esses bugs podem levar à perda de tempo e dinheiro para serem corrigidos, e, se não forem detectados, podem comprometer a robustez e correção do modelo ou introduzir problemas de desempenho. Para contornar esses problemas de design e implementação, surgiu uma nova linha de investigação designada por AutoML (Automated Machine Learning). AutoML visa automatizar o desenho de AA pipelines, a otimização de parâmetros, e a sua implementação. Uma parte importante dos pipelines de AA é a maneira como os features dos dados são manipulados. A manipulação de dados tem muitos aspetos, reunidos sob o termo genérico Feature Engineering (FE). Em suma, FE visa melhorar a qualidade do espaço de solução selecionando as features mais importantes e construindo novas features relevantes. Contudo, este é um processo que consome muitos recursos, pelo que a sua automação é uma sub-área altamente recompensadora de AutoML. Nesta tese, defino Feature Learning (FL) como a área de FE automatizado. Uma métrica importante de FE e, portanto, de FL, é a interpretabilidade das features aprendidas. Interpretabilidade, que se enquadra na área de Explainable IA (XIA), refere-se à facilidade de entender o significado de uma feature. A ocorrência de diversos escândalos em IA, como modelos racistas e sexistas, levaram a União Europeia a propor legislação sobre modelos sem interpretabilidade. Muitos métodos clássicos, e portanto amplamente usados, carecem de interpretabilidade, dando origem ao interesse recémdescoberto em XIA. A atual investigação em FL trata os valores de features existentes sem os relacionar com o seu significado semântico. Por exemplo, engenharia de uma feature que representa a multiplicação do código postal com a idade de uma pessoa não é um uso lógico do código postal. Embora os códigos postais possam ser representados como números inteiros, eles devem ser tratados como valores categóricos. A prevenção deste tipo de interações entre features, melhora o desempenho do pipeline, uma vez que reduz o espaço de procura de possíveis features ficando apenas com as que fazem semanticamente sentido. Além disso, este processo resulta em features que são intrinsecamente interpretáveis. Deste modo, o conhecimento sobre o domínio do problema, impede a engenharia de features sem significado durante o processo de FE.. Outro aspecto de FL normalmente não considerado nos métodos existentes, é a agregação de valores de uma única feature por várias entidades de dados. Por exemplo, vamos considerar um conjunto de dados sobre fraude de cartão de crédito. A quantidade média de transações anteriores de um cartão é potencialmente uma feature interessante para incluir, pois transmite o significado de uma transação ’normal’. No entanto, isso geralmente não é diretamente inferível nos métodos de FL existentes. Refirome a este método de FL como agregação de entidades, ou simplesmente agregação. Por fim, apesar da natureza imprevisível dos conjuntos de dados da vida real, os métodos existentes exigem principalmente features que tenham dados homogêneos. Isso exige que os cientistas de dados realizem um pré-processamento do conjunto de dados. Muitas vezes, isso requer transformar categorias em números inteiros ou algum tipo de codificação, como por exemplo one-hot encoding. Contudo, conforme discutido acima, isso pode reduzir a interpretabilidade e o desempenho do pipeline. A Programação Genética (GP), um método de ML, é também usado para FL e permite a criação de modelos mais interpretáveis que a maioria dos métodos tradicionais. GP é um método baseado em procura que evolui programas ou, no caso de FL, mapeamentos entre apresentas de espaços. Os métodos de FL baseados em GP existentes não incorporam os três aspectos acima mencionados: o conhecimento do domínio, a agregação e a conformidade com tipos de dados heterogêneos. Algumas abordagens incorporam algumas partes desses aspetos, principalmente usando gramáticas para orientar o processo de procura. O objetivo deste trabalho é explorar se a GP consegue usar gramáticas para melhorar a qualidade da FL, quer em termos de desempenho preditivo ou de interpretabilidade. Primeiro, construímos o Genetic Engine, uma framework de GP guiada por gramática (Grammar-Guided GP (GGGP)). O Genetic Engine é uma framework de GGGP fácil de usar que permite expressar gramáticas complexas. Mostramos que o Genetic Engine tem um bom desempenho quando comparado com a framework de Python do estado da arte, PonyGE2. Em segundo lugar, proponho dois novos métodos de FL baseados em GGGP implementados no Genetic Engine. Ambos os métodos estendem o M3GP, o método FL do estado da arte baseado em GP. A primeira incorpora o conhecimento do domínio, denominado M3GP com conhecimento do domínio (M3GP with Domain Knowledge (DK-M3GP)). O primeiro método restringe o comportamento das features permitindo apenas interações sensatas, por meio de condições e declarações. O segundo método estende X DK-M3GP, introduzindo agregação no espaço de procura, e é denominado DK-M3GP com Agregação (DK-M3GP with Aggregation (DKA-M3GP)). O DKA-M3GP usa totalmente a facilidade de implementação do Genetic Engine, pois requer a implementação de uma gramática complexa. Neste trabalho, o DK-M3GP e DKA-M3GP foram avaliados em comparação com o GP Tradicional, M3GP e numerosos métodos clássicos de FL em dois problemas de ML. As novas abordagens foram avaliadas assumindo que são métodos autônomos de FL e fazendo parte de uma pipeline maior. Como métodos FL independentes, ambos os métodos demonstram boa previsão de desempenho em pelo menos um dos dois problemas. Como parte da pipeline, os métodos apresentam pouca vantagem em relação aos métodos clássicos no seu desempenho de previsão. Após a análise dos resultados, uma possível explicação encontra-se no overfitting dos métodos FL para a função de fitness e no conjunto de dados de treino. O Neste trabalho, discuto também a melhoria na interpretabilidade após incorporar conhecimento do domínio no processo de procura. Uma avaliação preliminar do DK-M3GP indica que, utilizando a medida de complexidade Expression Size (ES), é possível obter uma melhoria na interpretabilidade. Todavia, verifiquei também que a medida de complexidade utilizada pode não ser a mais adequada devido a estrutura de características em forma de árvore das características construídas por DK-M3GP que potencia um ES. Considero que um método de avaliação de interpretabilidade mais complexo deve apontar isso
    corecore