51,243 research outputs found

    Large scale hierarchical clustering of protein sequences

    Get PDF
    BACKGROUND: Searching a biological sequence database with a query sequence looking for homologues has become a routine operation in computational biology. In spite of the high degree of sophistication of currently available search routines it is still virtually impossible to identify quickly and clearly a group of sequences that a given query sequence belongs to. RESULTS: We report on our developments in grouping all known protein sequences hierarchically into superfamily and family clusters. Our graph-based algorithms take into account the topology of the sequence space induced by the data itself to construct a biologically meaningful partitioning. We have applied our clustering procedures to a non-redundant set of about 1,000,000 sequences resulting in a hierarchical clustering which is being made available for querying and browsing at . CONCLUSIONS: Comparisons with other widely used clustering methods on various data sets show the abilities and strengths of our clustering methods in producing a biologically meaningful grouping of protein sequences

    Establishment of a integrative multi-omics expression database CKDdb in the context of chronic kidney disease (CKD)

    Get PDF
    Complex human traits such as chronic kidney disease (CKD) are a major health and financial burden in modern societies. Currently, the description of the CKD onset and progression at the molecular level is still not fully understood. Meanwhile, the prolific use of high-throughput omic technologies in disease biomarker discovery studies yielded a vast amount of disjointed data that cannot be easily collated. Therefore, we aimed to develop a molecule-centric database featuring CKD-related experiments from available literature publications. We established the Chronic Kidney Disease database CKDdb, an integrated and clustered information resource that covers multi-omic studies (microRNAs, genomics, peptidomics, proteomics and metabolomics) of CKD and related disorders by performing literature data mining and manual curation. The CKDdb database contains differential expression data from 49395 molecule entries (redundant), of which 16885 are unique molecules (non-redundant) from 377 manually curated studies of 230 publications. This database was intentionally built to allow disease pathway analysis through a systems approach in order to yield biological meaning by integrating all existing information and therefore has the potential to unravel and gain an in-depth understanding of the key molecular events that modulate CKD pathogenesis

    Redundancy-Free Self-Supervised Relational Learning for Graph Clustering

    Full text link
    Graph clustering, which learns the node representations for effective cluster assignments, is a fundamental yet challenging task in data analysis and has received considerable attention accompanied by graph neural networks in recent years. However, most existing methods overlook the inherent relational information among the non-independent and non-identically distributed nodes in a graph. Due to the lack of exploration of relational attributes, the semantic information of the graph-structured data fails to be fully exploited which leads to poor clustering performance. In this paper, we propose a novel self-supervised deep graph clustering method named Relational Redundancy-Free Graph Clustering (R2^2FGC) to tackle the problem. It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder. To obtain effective representations of the semantic information, we preserve the consistent relation among augmented nodes, whereas the redundant relation is further reduced for learning discriminative embeddings. In addition, a simple yet valid strategy is utilized to alleviate the over-smoothing issue. Extensive experiments are performed on widely used benchmark datasets to validate the superiority of our R2^2FGC over state-of-the-art baselines. Our codes are available at https://github.com/yisiyu95/R2FGC.Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS 2024
    • …
    corecore