358 research outputs found

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Switched capacitor networks : a novel prewarping procedure

    Get PDF
    Bibliography: leaves 152-157.Novel methods for prewarping filter specifications prior to realization. in Switched Capacitor (SC) form are presented. These allow the design of arbitrary response requirements, exhibiting a low amount of error that normally results from the frequency warping associated with sampled-data networks. Adjustment is applied to the pole and zero locations of a reference filter, using three distinct approaches (Center frequency "CF", Selectivity "S" and Complex Mapping "CM" pole/zero prewarping), developed for both the Lossless Discrete Integrator (LOI) and Bilinear (Bil) analog to digital transformations. The derivation of the prewarping expressions is explained with reference to these mappings, and the effect they have on the apparent pole and zero locations of an SC filter realization

    High-Quality Image Resizing Using Oblique Projection Operators

    Get PDF
    The standard interpolation approach to image resizing is to fit the original picture with a continuous model and resample the function at the desired rate. However, one can obtain more accurate results if one applies a filter prior to sampling, a fact well known from sampling theory. The optimal solution corresponds to an orthogonal projection onto the underlying continuous signal space. Unfortunately, the optimal projection prefilter is difficult to implement when sinc or high order spline functions are used. In this paper, we propose to resize the image using an oblique rather than an orthogonal projection operator in order to make use of faster, simpler, and more general algorithms. We show that we can achieve almost the same result as with the orthogonal projection provided that we use the same approximation space. The main advantage is that it becomes perfectly feasible to use higher order models (e.g., splines of degree n ≥ 3). We develop the theoretical background and present a simple and practical implementation procedure using B-splines. Our experiments show that the proposed algorithm consistently outperforms the standard interpolation methods and that it provides essentially the same performance as the optimal procedure (least squares solution) with considerably fewer computations. The method works for arbitrary scaling factors and is applicable to both image enlargement and reduction
    • …
    corecore