1,781 research outputs found

    ClassBench-ng: Benchmarking Packet Classification Algorithms in the OpenFlow Era

    Get PDF

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    CERN Storage Systems for Large-Scale Wireless

    Get PDF
    The project aims at evaluating the use of CERN computing infrastructure for next generation sensor networks data analysis. The proposed system allows the simulation of a large-scale sensor array for traffic analysis, streaming data to CERN storage systems in an efficient way. The data are made available for offline and quasi-online analysis, enabling both long term planning and fast reaction on the environment

    Projeto, implementação e avaliação do suporte de casamento com prefixo mais longo para IPv4/IPv6 em planos de dados programáveis multi-arquitetura

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Dentre as novas tendências em programação de dataplane dentro de SDN (Software Defined Networking) destacam-se os esforços para prover um suporte multi-plataforma dotado de alta definição das informações que são processadas pelo pipeline do plano de dados. No entanto, alguns desafios ainda persistem, como a necessidade de um plano de dados programável ou a adoção de uma abstração de programação independente de protocolo. Como forma de mitigar tais problemas, verifica-se que a Linguagem Específica de Domínio~(DSL) Programming Protocol-Independent Packet Processors~(P4) desponta como uma tendência emergente para expressar como os pacotes são processados pelo plano de dados de uma plataforma de rede programável. De modo independente e em paralelo, constata-se que o projeto OpenDataPlane~(ODP) cria um conjunto de plataformas abertas de Application Programming Interfaces~(APIs) projetado para o plano de dados de rede. Isso posto, tem-se que o Multi-Architecture Compiler System for Abstract Dataplanes~(MACSAD) surge como uma abordagem para convergir P4 e ODP em um processo de compilação convencional, arquivando a portabilidade dos aplicativos de plano de dados sem afetar as melhorias de desempenho do alvo. O MACSAD pode integrar a API do ODP e o P4, reunindo-os e definindo um plano de dados programável em um sistema de compilador unificado. Este trabalho tem como objetivo adicionar o suporte do Longest Prefix Match~(LPM) do IPv4/IPv6 ao MACSAD, integrado com as APIs do ODP e à programação P4, oferecendo recursos de planejamento de dados de alto desempenho. O suporte ao LPM proposto para o MACSAD combina o algoritmo de lookup e a biblioteca da API do ODP com o suporte à tabela MACSAD, para criar uma base de encaminhamento completa usada no processo do LPM. A implementação do IPv4 adapta o atual algoritmo de lookup do ODP para trabalhar com o MACSAD. A implementação de lookup IPv6, atualmente não suportada pelo ODP, é uma extensão do suporte IPv4 que é desenvolvido usando o mesmo algoritmo adaptado a uma chave de 128 bits. A pesquisa IPv4 e IPv6 usa uma base de árvore binária para executar o lookup do LPM. Para a avaliação de desempenho do suporte ao LPM, utilizamos uma ferramenta geradora de tráfego Network Function Performance Analyzer~(NFPA) que permite gerar diferentes tipos de tráfego no MACSAD. Cabe ainda destacar, como uma contribuição lateral deste trabalho, o desenvolvimento da ferramenta geradora de pacote BB-Gen, já com lançamento open source. Resultados experimentais mostram que é possível atingir um throughput de 10G com tamanhos de pacotes de 512 bytes ou superioresAbstract: New trends in dataplane programmability inside Software Defined Networking~(SDN) are in efforts to bring multi-platform support with a high definition of the information that is processed by the dataplane pipeline. However, some challenges are still present, as the necessity of a programmable dataplane or a protocol independent programming abstraction. The Programming Protocol-Independent Packet Processors~(P4) Domain Specific Language (DSL) is an emerging trend to express how the packets are processed by the dataplane of a programmable network platform. In parallel, OpenDataPlane~(ODP) project creates an open-source, cross-platform set of Application Programming Interfaces~(APIs) designed for the networking data plane. Multi-Architecture Compiler System for Abstract Dataplanes~(MACSAD) is an approach to converge P4 and ODP in a conventional compilation process, achieving portability of the dataplane applications without affecting the target performance improvements. MACSAD can integrate the ODP API and the P4, bringing them together and defining a programmable dataplane across multiple targets in a unified compiler system. This work aims at adding IPv4/IPv6 Longest Prefix Match~(LPM) support to MACSAD integrated with ODP APIs and P4 programmability delivering high-performance dataplane capabilities. The proposed LPM support for MACSAD combines the lookup algorithm and the ODP API library with MACSAD table support, to create a complete forwarding base used in the LPM process. The IPv4 implementation adapts the current ODP lookup algorithm to work with MACSAD. IPv6 lookup implementation, currently not supported by ODP, is an extension of the IPv4 support, developed using the same algorithm adapted to a 128-bit key. IPv4 and IPv6 lookup use a binary tree base, to perform the LPM lookup. For the performance evaluation of the LPM support, we use a traffic generator tool Network Function Performance Analyzer~(NFPA) that allows generating different types of traffic across MACSAD. A side contribution on this front we developed and released open source the BB-Gen packet crafter tool. Experimental results show that it is possible to reach a throughput of 10G with packets sizes of 512 Bytes and aboveMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    IPV6 BLOCKCHAIN DATA COMMUNICATION FOR UAV SWARM-INTELLIGENCE SYSTEMS BASED ON PEER-TO-PEER, PEER-TO-MANY, AND MANY-TO-PEER SCENARIOS

    Get PDF
    This thesis explores the use of blockchains along with the Internet Protocol version 6 (IPv6) data packet messages to support secure, high-performance, and scalable communication with an intelligent swarm of unmanned aerial vehicles (UAVs). For this thesis, we investigate the exchange of encrypted data packets for three scenarios, those being peer-to-peer, peer-to-many, and many-to-peer. We simulate the swarm’s behavior for each of these scenarios and vary the number of UAVs in a swarm over the simulation runs. The simulation-based results showed that for peer-to-peer scenarios and many-to-peer scenarios, there is no significant increase in latency even though in many-to-peer scenarios, the number of interacting nodes increases. In contrast, latency increases for the peer-to-many scenarios. Additional research needs to be performed to assess the security and scalability of the blockchain-IPv6 approach proposed in this thesis.Major, Indonesian NavyApproved for public release. Distribution is unlimited

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Tactical communication systems based on civil standards: Modeling in the MiXiM framework

    Full text link
    In this paper, new work is presented belonging to an ongoing study, which evaluates civil communication standards as potential candidates for the future military Wide Band Waveforms (WBWFs). After an evaluation process of possible candidates presented in [2], the selection process in [1] showed that the IEEE 802.11n OFDM could be a possible military WBWF candidate, but it should be further investigated first in order to enhance or even replace critical modules. According to this, some critical modules of the physical layer has been further analyzed in [3] regarding the susceptibility of the OFDM signal under jammer influences. However, the critical modules of the MAC layer (e.g., probabilistic medium access CSMA/CA) have not been analysed. In fact, it was only suggested in [2] to replace this medium access by the better suited Unified Slot Allocation Protocol - Multiple Access (USAP-MA) [4]. In this regard, the present contribution describes the design paradigms of the new MAC layer and explains how the proposed WBWF candidate has been modelled within the MiXiM Framework of the OMNeT++ simulator.Comment: Published in: A. F\"orster, C. Sommer, T. Steinbach, M. W\"ahlisch (Eds.), Proc. of 1st OMNeT++ Community Summit, Hamburg, Germany, September 2, 2014, arXiv:1409.0093, 201
    corecore