88 research outputs found

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Grasping and Assembling with Modular Robots

    Get PDF
    A wide variety of problems, from manufacturing to disaster response and space exploration, can benefit from robotic systems that can firmly grasp objects or assemble various structures, particularly in difficult, dangerous environments. In this thesis, we study the two problems, robotic grasping and assembly, with a modular robotic approach that can facilitate the problems with versatility and robustness. First, this thesis develops a theoretical framework for grasping objects with customized effectors that have curved contact surfaces, with applications to modular robots. We present a collection of grasps and cages that can effectively restrain the mobility of a wide range of objects including polyhedra. Each of the grasps or cages is formed by at most three effectors. A stable grasp is obtained by simple motion planning and control. Based on the theory, we create a robotic system comprised of a modular manipulator equipped with customized end-effectors and a software suite for planning and control of the manipulator. Second, this thesis presents efficient assembly planning algorithms for constructing planar target structures collectively with a collection of homogeneous mobile modular robots. The algorithms are provably correct and address arbitrary target structures that may include internal holes. The resultant assembly plan supports parallel assembly and guarantees easy accessibility in the sense that a robot does not have to pass through a narrow gap while approaching its target position. Finally, we extend the algorithms to address various symmetric patterns formed by a collection of congruent rectangles on the plane. The basic ideas in this thesis have broad applications to manufacturing (restraint), humanitarian missions (forming airfields on the high seas), and service robotics (grasping and manipulation)

    A Holistic Approach to Human-Supervised Humanoid Robot Operations in Extreme Environments

    Get PDF
    Nuclear energy will play a critical role in meeting clean energy targets worldwide. However, nuclear environments are dangerous for humans to operate in due to the presence of highly radioactive materials. Robots can help address this issue by allowing remote access to nuclear and other highly hazardous facilities under human supervision to perform inspection and maintenance tasks during normal operations, help with clean-up missions, and aid in decommissioning. This paper presents our research to help realize humanoid robots in supervisory roles in nuclear environments. Our research focuses on National Aeronautics and Space Administration (NASA’s) humanoid robot, Valkyrie, in the areas of constrained manipulation and motion planning, increasing stability using support contact, dynamic non-prehensile manipulation, locomotion on deformable terrains, and human-in-the-loop control interfaces

    A Certified-Complete Bimanual Manipulation Planner

    Full text link
    Planning motions for two robot arms to move an object collaboratively is a difficult problem, mainly because of the closed-chain constraint, which arises whenever two robot hands simultaneously grasp a single rigid object. In this paper, we propose a manipulation planning algorithm to bring an object from an initial stable placement (position and orientation of the object on the support surface) towards a goal stable placement. The key specificity of our algorithm is that it is certified-complete: for a given object and a given environment, we provide a certificate that the algorithm will find a solution to any bimanual manipulation query in that environment whenever one exists. Moreover, the certificate is constructive: at run-time, it can be used to quickly find a solution to a given query. The algorithm is tested in software and hardware on a number of large pieces of furniture.Comment: 12 pages, 7 figures, 1 tabl

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    From Deployments Of Elder Care Service Robots To The Design Of Affordable Low-Complexity End-Effectors And Novel Manipulation Techniques

    Get PDF
    This thesis proposes an investigation on both behavioral and technical aspects of human-robot interaction (HRI) in elder care settings, in view of an affordable platform capable of executing desired tasks. The behavioral investigation combines a qualitative study with focus groups and surveys from not only the elders’ standpoint, but also from the standpoint of healthcare professionals to investigate suitable tasks to be accomplished by a service robot in such environments. Through multiple deployments of various robot embodiments at actual elder care facilities (such as at a low-income Supportive Apartment Living, SAL, and Program of All-Inclusive Care, PACE Centers) and interaction with older adults, design guidelines are developed to improve on both interaction and usability aspects. This need assessment informed the technical investigation of this work, where we initially propose picking and placing objects using end-effectors without internal mobility (or zero degrees-of-freedom, DOF), considering both quasi-static (tipping and regrasping as in-hand manipulation) and dynamic approaches. Maximizing grasping versatility by allowing robots to grasp multiple objects sequentially using a single end-effector and actuator is also proposed. These novel manipulation techniques and end-effector designs focus on minimizing robot hardware usage and cost, while still performing complex tasks and complying with safety constraints imposed by the elder care facilities

    A novel aerial manipulation design, modelling and control for geometric com compensation

    Get PDF
    International audienceThis paper presents the design and modelling of a new Aerial manipulating system, that resolve a displacement of centre of gravity of the whole system with a mechanical device. A prismatic joint between the multirotor and a robotic arm is introduced to make a centre of mass as close as to the geometric centre of the whole system. This paper details also the geometric and dynamic modelling of a coupled system with a Lagrange formalism and control law with a Closed Loop Inverse Kinematic Algorithm (CLIKA). This dynamic inverse control is validated in a Simulink environment showing the efficiency of our approach
    • …
    corecore