27 research outputs found

    Schedulability, Response Time Analysis and New Models of P-FRP Systems

    Get PDF
    Functional Reactive Programming (FRP) is a declarative approach for modeling and building reactive systems. FRP has been shown to be an expressive formalism for building applications of computer graphics, computer vision, robotics, etc. Priority-based FRP (P-FRP) is a formalism that allows preemption of executing programs and guarantees real-time response. Since functional programs cannot maintain state and mutable data, changes made by programs that are preempted have to be rolled back. Hence in P-FRP, a higher priority task can preempt the execution of a lower priority task, but the preempted lower priority task will have to restart after the higher priority task has completed execution. This execution paradigm is called Abort-and-Restart (AR). Current real-time research is focused on preemptive of non-preemptive models of execution and several state-of-the-art methods have been developed to analyze the real-time guarantees of these models. Unfortunately, due to its transactional nature where preempted tasks are aborted and have to restart, the execution semantics of P-FRP does not fit into the standard definitions of preemptive or non-preemptive execution, and the research on the standard preemptive and non-preemptive may not applicable for the P-FRP AR model. Out of many research areas that P-FRP may demands, we focus on task scheduling which includes task and system modeling, priority assignment, schedulability analysis, response time analysis, improved P-FRP AR models, algorithms and corresponding software. In this work, we review existing results on P-FRP task scheduling and then present our research contributions: (1) a tighter feasibility test interval regarding the task release offsets as well as a linked list based algorithm and implementation for scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension of SimSo - a SimPy-based, highly extensible and user friendly task generator and task scheduling simulator.Computer Science, Department o

    Sharing Non-Processor Resources in Multiprocessor Real-Time Systems

    Get PDF
    Computing devices are increasingly being leveraged in cyber-physical systems, in which computing devices sense, control, and interact with the physical world. Associated with many such real-world interactions are strict timing constraints, which if unsatisfied, can lead to catastrophic consequences. Modern examples of such timing constraints are prevalent in automotive systems, such as airbag controllers, anti-lock brakes, and new autonomous features. In all of these examples, a failure to correctly respond to an event in a timely fashion could lead to a crash, damage, injury and even loss of life. Systems with imperative timing constraints are called real-time systems, and are broadly the subject of this dissertation. Much previous work on real-time systems and scheduling theory assumes that computing tasks are independent, i.e., the only resource they share is the platform upon which they are executed. In practice, however, tasks share many resources, ranging from more overt resources such as shared memory objects, to less overt ones, including data buses and other hardware and I/O devices. Accesses to some such resources must be synchronized to ensure safety, i.e., logical correctness, while other resources may exhibit better run-time performance if accesses are explicitly synchronized. The goal of this dissertation was to develop new synchronization algorithms and associated analysis techniques that can be used to synchronize access to many classes of resources, while improving the overall resource utilization, specifically as measured by real-time schedulability. Towards that goal, the Real-Time Nested Locking Protocol (RNLP), the first multiprocessor real-time locking protocol that supports lock nesting or fine-grained locking is proposed and analyzed. Furthermore, the RNLP is extended to support reader/writer locking, as well as k-exclusion locking. All presented RNLP variants are proven optimal. Furthermore, experimental results demonstrate the schedulability-related benefits of the RNLP. Additionally, three new synchronization algorithms are presented, which are specifically motivated by the need to manage shared hardware resources to improve real-time predictability. Furthermore, two new classes of shared resources are defined, and the first synchronization algorithms for them are proposed. To analyze these new algorithms, a novel analysis technique called idleness analysis is presented, which can be used to incorporate the effects of blocking into schedulability analysis.Doctor of Philosoph

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Evaluating and Optimizing Real-Time Software Transactional Memory

    Get PDF
    Software transactional memory (STM) is a proposed solution to the challenge of developing correct concurrent code. STM allows programmers to annotate sections of their code that need to be synchronized, and the STM implementation resolves synchronization issues behind the scenes. One application domain where STM can be particularly useful is real-time systems, where schedulability is a crucial metric is system certification. However, STM usually relies on retries to resolve contention, which makes theoretical worst-case behavior, and thus schedulability, highly pessimistic and therefore impractical in the real-time application domain. Previous work on real-time STM has failed to give both theoretical and practical solutions to this problem. Work in this thesis is part of a large effort to present real-time STM that is both schedulable and high-performing, achieved using a retry-free, and thus entirely lock-based, STM implementation. This work details multiple metrics for evaluating retry-free STM compared to a known retry-based lock-based solution, as well as presents optimizations to a locking protocol for increased performance in this context. Evaluations show a retry-free STM implementation with optimized locking protocols is significantly more schedulable and higher performing on single-socket machines than other lock-based STM.Bachelor of Scienc

    Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts

    Get PDF
    During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this paper, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of "breaking" transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make contention-sensitive protocols a viable approach in practice

    Efficient Synchronization for Real-Time Systems with Nested Resource Access

    Get PDF
    Real-time systems are comprised of tasks, each of which must be guaranteed to meet its timing requirements. These tasks may request access to shared system components, called resources. Each such request may experience delays before being granted resource access. These delays can be separated into two categories: (i) those caused by the order in which tasks are granted resource access, and (ii) those caused by the time it takes to coordinate this ordering. If these delays are too large, a task may be unable to meet its timing requirements. Tasks can require access to multiple resources concurrently, acquiring these resources in a nested fashion. This nested resource access can cause significant delays to tasks; these delays can far exceed those when only a single resource is required at a time, as certain request orderings cause delays between tasks that do not share any resources. This dissertation presents locking protocols and a protocol-independent approach to mitigate resource access delays. Nested resource access can increase delays for all requests, including non-nested requests. The first protocol eliminates these additional delays by separating requests by type and creating a fast-path mechanism for non-nested requests. The next two protocols both reduce delays by reordering requests. One protocol reorders requests as they are issued, and the other uses an offline process to determine which requests may execute concurrently. These three protocols were compared to prior approaches in an evaluation across a range of task systems; all three protocols resulted in more task systems guaranteed to meet their timing requirements. Finally, a protocol-independent approach reduces delays by using a designated task to execute the locking protocol on behalf of other tasks. When applied to two protocol variants, this approach significantly reduced delays.Doctor of Philosoph

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues
    corecore