386 research outputs found

    Analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains

    Full text link
    This paper presents the first analysis of a space--time hybridizable discontinuous Galerkin method for the advection--diffusion problem on time-dependent domains. The analysis is based on non-standard local trace and inverse inequalities that are anisotropic in the spatial and time steps. We prove well-posedness of the discrete problem and provide a priori error estimates in a mesh-dependent norm. Convergence theory is validated by a numerical example solving the advection--diffusion problem on a time-dependent domain for approximations of various polynomial degree

    High Order Cell-Centered Lagrangian-Type Finite Volume Schemes with Time-Accurate Local Time Stepping on Unstructured Triangular Meshes

    Get PDF
    We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm. We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as 4.7.Comment: 31 pages, 13 figure

    A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows

    Full text link
    The potential of the hybridized discontinuous Galerkin (HDG) method has been recognized for the computation of stationary flows. Extending the method to time-dependent problems can, e.g., be done by backward difference formulae (BDF) or diagonally implicit Runge-Kutta (DIRK) methods. In this work, we investigate the use of embedded DIRK methods in an HDG solver, including the use of adaptive time-step control. Numerical results demonstrate the performance of the method for both linear and nonlinear (systems of) time-dependent convection-diffusion equations

    An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains

    Full text link
    This paper presents a space-time embedded-hybridized discontinuous Galerkin (EHDG) method for the Navier--Stokes equations on moving domains. This method uses a different hybridization compared to the space-time hybridized discontinuous Galerkin (HDG) method we presented previously in (Int. J. Numer. Meth. Fluids 89: 519--532, 2019). In the space-time EHDG method the velocity trace unknown is continuous while the pressure trace unknown is discontinuous across facets. In the space-time HDG method, all trace unknowns are discontinuous across facets. Alternatively, we present also a space-time embedded discontinuous Galerkin (EDG) method in which all trace unknowns are continuous across facets. The advantage of continuous trace unknowns is that the formulation has fewer global degrees-of-freedom for a given mesh than when using discontinuous trace unknowns. Nevertheless, the discrete velocity field obtained by the space-time EHDG and EDG methods, like the space-time HDG method, is exactly divergence-free, even on moving domains. However, only the space-time EHDG and HDG methods result in divergence-conforming velocity fields. An immediate consequence of this is that the space-time EHDG and HDG discretizations of the conservative form of the Navier--Stokes equations are energy stable. The space-time EDG method, on the other hand, requires a skew-symmetric formulation of the momentum advection term to be energy-stable. Numerical examples will demonstrate the differences in solution obtained by the space-time EHDG, EDG, and HDG methods

    A locally conservative and energy-stable finite element for the Navier--Stokes problem on time-dependent domains

    Full text link
    We present a finite element method for the incompressible Navier--Stokes problem that is locally conservative, energy-stable and pressure-robust on time-dependent domains. To achieve this, the space--time formulation of the Navier--Stokes problem is considered. The space--time domain is partitioned into space--time slabs which in turn are partitioned into space--time simplices. A combined discontinuous Galerkin method across space--time slabs, and space--time hybridized discontinuous Galerkin method within a space--time slab, results in an approximate velocity field that is H(div)H({\rm div})-conforming and exactly divergence-free, even on time-dependent domains. Numerical examples demonstrate the convergence properties and performance of the method
    • …
    corecore