19 research outputs found

    Finite edge-transitive dihedrant graphs

    Get PDF
    AbstractIn this paper, we first prove that each biquasiprimitive permutation group containing a regular dihedral subgroup is biprimitive, and then give a classification of such groups. The classification is then used to classify vertex-quasiprimitive and vertex-biquasiprimitive edge-transitive dihedrants. Moreover, a characterization of valencies of normal edge-transitive dihedrants is obtained, and some classes of examples with certain valences are constructed

    The energy of cayley graphs for a generating subset of the dihedral groups

    Get PDF
    Let G be a finite group and S be a subset of G where S does not include the identity of G and is inverse closed. A Cayley graph of a group G with respect to the subset S is a graph where its vertices are the elements of G and two vertices a and b are connected if ab^(−1) is in the subset S. The energy of a Cayley graph is the sum of all absolute values of the eigenvalues of its adjacency matrix. In this paper, we consider a specific subset S = {b, ab, . . . , a^(n−1)b} for dihedral group of order 2n, where n is greater or equal to 3 and find the Cayley graph with respect to the set. We also calculate the eigenvalues and compute the energy of the respected Cayley graphs. Finally, the generalization of the energy of the respected Cayley graphs is found

    European Journal of Combinatorics Index, Volume 27

    Get PDF
    BACKGROUND: Diabetes is an inflammatory condition associated with iron abnormalities and increased oxidative damage. We aimed to investigate how diabetes affects the interrelationships between these pathogenic mechanisms. METHODS: Glycaemic control, serum iron, proteins involved in iron homeostasis, global antioxidant capacity and levels of antioxidants and peroxidation products were measured in 39 type 1 and 67 type 2 diabetic patients and 100 control subjects. RESULTS: Although serum iron was lower in diabetes, serum ferritin was elevated in type 2 diabetes (p = 0.02). This increase was not related to inflammation (C-reactive protein) but inversely correlated with soluble transferrin receptors (r = - 0.38, p = 0.002). Haptoglobin was higher in both type 1 and type 2 diabetes (p &lt; 0.001) and haemopexin was higher in type 2 diabetes (p &lt; 0.001). The relation between C-reactive protein and haemopexin was lost in type 2 diabetes (r = 0.15, p = 0.27 vs r = 0.63, p &lt; 0.001 in type 1 diabetes and r = 0.36, p = 0.001 in controls). Haemopexin levels were independently determined by triacylglycerol (R(2) = 0.43) and the diabetic state (R(2) = 0.13). Regarding oxidative stress status, lower antioxidant concentrations were found for retinol and uric acid in type 1 diabetes, alpha-tocopherol and ascorbate in type 2 diabetes and protein thiols in both types. These decreases were partially explained by metabolic-, inflammatory- and iron alterations. An additional independent effect of the diabetic state on the oxidative stress status could be identified (R(2) = 0.5-0.14). CONCLUSIONS: Circulating proteins, body iron stores, inflammation, oxidative stress and their interrelationships are abnormal in patients with diabetes and differ between type 1 and type 2 diabetes</p
    corecore