24 research outputs found

    Supervised dictionary learning for action recognition and localization

    Get PDF
    PhDImage sequences with humans and human activities are everywhere. With the amount of produced and distributed data increasing at an unprecedented rate, there has been a lot of interest in building systems that can understand and interpret the visual data, and in particular detect and recognise human actions. Dictionary based approaches learn a dictionary from descriptors extracted from the videos in the first stage and a classifier or a detector in the second stage. The major drawback of such an approach is that the dictionary is learned in an unsupervised manner without considering the task (classification or detection) that follows it. In this work we develop task dependent(supervised) dictionaries for action recognition and localization, i.e., dictionaries that are best suited for the subsequent task. In the first part of the work, we propose a supervised max-margin framework for linear and non-linear Non-Negative Matrix Factorization (NMF). To achieve this, we impose max-margin constraints within the formulation of NMF and simultaneously solve for the classifier and the dictionary. The dictionary (basis matrix) thus obtained maximizes the margin of the classifier in the low dimensional space (in the linear case) or in the high dimensional feature space (in the non-linear case). In the second part the work, we develop methodologies for action localization. We first propose a dictionary weighting approach where we learn local and global weights for the dictionary by considering the localization information of the training sequences. We next extend this approach to learn a task-dependent dictionary for action localization that incorporates the localization information of the training sequences into dictionary learning. The results on publicly available datasets show that the performance of the system is improved by using the supervised information while learning dictionary.QMUL; EPSRC PhD scholarship program (EP/G033935/1)

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Twofold Structured Features-Based Siamese Network for Infrared Target Tracking

    Full text link
    Nowadays, infrared target tracking has been a critical technology in the field of computer vision and has many applications, such as motion analysis, pedestrian surveillance, intelligent detection, and so forth. Unfortunately, due to the lack of color, texture and other detailed information, tracking drift often occurs when the tracker encounters infrared targets that vary in size or shape. To address this issue, we present a twofold structured features-based Siamese network for infrared target tracking. First of all, in order to improve the discriminative capacity for infrared targets, a novel feature fusion network is proposed to fuse both shallow spatial information and deep semantic information into the extracted features in a comprehensive manner. Then, a multi-template update module based on template update mechanism is designed to effectively deal with interferences from target appearance changes which are prone to cause early tracking failures. Finally, both qualitative and quantitative experiments are carried out on VOT-TIR 2016 dataset, which demonstrates that our method achieves the balance of promising tracking performance and real-time tracking speed against other out-of-the-art trackers.Comment: 13 pages,9 figures,references adde

    Robust and real-time hand detection and tracking in monocular video

    Get PDF
    In recent years, personal computing devices such as laptops, tablets and smartphones have become ubiquitous. Moreover, intelligent sensors are being integrated into many consumer devices such as eyeglasses, wristwatches and smart televisions. With the advent of touchscreen technology, a new human-computer interaction (HCI) paradigm arose that allows users to interface with their device in an intuitive manner. Using simple gestures, such as swipe or pinch movements, a touchscreen can be used to directly interact with a virtual environment. Nevertheless, touchscreens still form a physical barrier between the virtual interface and the real world. An increasingly popular field of research that tries to overcome this limitation, is video based gesture recognition, hand detection and hand tracking. Gesture based interaction allows the user to directly interact with the computer in a natural manner by exploring a virtual reality using nothing but his own body language. In this dissertation, we investigate how robust hand detection and tracking can be accomplished under real-time constraints. In the context of human-computer interaction, real-time is defined as both low latency and low complexity, such that a complete video frame can be processed before the next one becomes available. Furthermore, for practical applications, the algorithms should be robust to illumination changes, camera motion, and cluttered backgrounds in the scene. Finally, the system should be able to initialize automatically, and to detect and recover from tracking failure. We study a wide variety of existing algorithms, and propose significant improvements and novel methods to build a complete detection and tracking system that meets these requirements. Hand detection, hand tracking and hand segmentation are related yet technically different challenges. Whereas detection deals with finding an object in a static image, tracking considers temporal information and is used to track the position of an object over time, throughout a video sequence. Hand segmentation is the task of estimating the hand contour, thereby separating the object from its background. Detection of hands in individual video frames allows us to automatically initialize our tracking algorithm, and to detect and recover from tracking failure. Human hands are highly articulated objects, consisting of finger parts that are connected with joints. As a result, the appearance of a hand can vary greatly, depending on the assumed hand pose. Traditional detection algorithms often assume that the appearance of the object of interest can be described using a rigid model and therefore can not be used to robustly detect human hands. Therefore, we developed an algorithm that detects hands by exploiting their articulated nature. Instead of resorting to a template based approach, we probabilistically model the spatial relations between different hand parts, and the centroid of the hand. Detecting hand parts, such as fingertips, is much easier than detecting a complete hand. Based on our model of the spatial configuration of hand parts, the detected parts can be used to obtain an estimate of the complete hand's position. To comply with the real-time constraints, we developed techniques to speed-up the process by efficiently discarding unimportant information in the image. Experimental results show that our method is competitive with the state-of-the-art in object detection while providing a reduction in computational complexity with a factor 1 000. Furthermore, we showed that our algorithm can also be used to detect other articulated objects such as persons or animals and is therefore not restricted to the task of hand detection. Once a hand has been detected, a tracking algorithm can be used to continuously track its position in time. We developed a probabilistic tracking method that can cope with uncertainty caused by image noise, incorrect detections, changing illumination, and camera motion. Furthermore, our tracking system automatically determines the number of hands in the scene, and can cope with hands entering or leaving the video canvas. We introduced several novel techniques that greatly increase tracking robustness, and that can also be applied in other domains than hand tracking. To achieve real-time processing, we investigated several techniques to reduce the search space of the problem, and deliberately employ methods that are easily parallelized on modern hardware. Experimental results indicate that our methods outperform the state-of-the-art in hand tracking, while providing a much lower computational complexity. One of the methods used by our probabilistic tracking algorithm, is optical flow estimation. Optical flow is defined as a 2D vector field describing the apparent velocities of objects in a 3D scene, projected onto the image plane. Optical flow is known to be used by many insects and birds to visually track objects and to estimate their ego-motion. However, most optical flow estimation methods described in literature are either too slow to be used in real-time applications, or are not robust to illumination changes and fast motion. We therefore developed an optical flow algorithm that can cope with large displacements, and that is illumination independent. Furthermore, we introduce a regularization technique that ensures a smooth flow-field. This regularization scheme effectively reduces the number of noisy and incorrect flow-vector estimates, while maintaining the ability to handle motion discontinuities caused by object boundaries in the scene. The above methods are combined into a hand tracking framework which can be used for interactive applications in unconstrained environments. To demonstrate the possibilities of gesture based human-computer interaction, we developed a new type of computer display. This display is completely transparent, allowing multiple users to perform collaborative tasks while maintaining eye contact. Furthermore, our display produces an image that seems to float in thin air, such that users can touch the virtual image with their hands. This floating imaging display has been showcased on several national and international events and tradeshows. The research that is described in this dissertation has been evaluated thoroughly by comparing detection and tracking results with those obtained by state-of-the-art algorithms. These comparisons show that the proposed methods outperform most algorithms in terms of accuracy, while achieving a much lower computational complexity, resulting in a real-time implementation. Results are discussed in depth at the end of each chapter. This research further resulted in an international journal publication; a second journal paper that has been submitted and is under review at the time of writing this dissertation; nine international conference publications; a national conference publication; a commercial license agreement concerning the research results; two hardware prototypes of a new type of computer display; and a software demonstrator

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Monocular depth estimation in images and sequences using occlusion cues

    Get PDF
    When humans observe a scene, they are able to perfectly distinguish the different parts composing it. Moreover, humans can easily reconstruct the spatial position of these parts and conceive a consistent structure. The mechanisms involving visual perception have been studied since the beginning of neuroscience but, still today, not all the processes composing it are known. In usual situations, humans can make use of three different methods to estimate the scene structure. The first one is the so called divergence and it makes use of both eyes. When objects lie in front of the observed at a distance up to hundred meters, subtle differences in the image formation in each eye can be used to determine depth. When objects are not in the field of view of both eyes, other mechanisms should be used. In these cases, both visual cues and prior learned information can be used to determine depth. Even if these mechanisms are less accurate than divergence, humans can almost always infer the correct depth structure when using them. As an example of visual cues, occlusion, perspective or object size provide a lot of information about the structure of the scene. A priori information depends on each observer, but it is normally used subconsciously by humans to detect commonly known regions such as the sky, the ground or different types of objects. In the last years, since technology has been able to handle the processing burden of vision systems, there has been lots of efforts devoted to design automated scene interpreting systems. In this thesis we address the problem of depth estimation using only one point of view and using only occlusion depth cues. The thesis objective is to detect occlusions present in the scene and combine them with a segmentation system so as to generate a relative depth order depth map for a scene. We explore both static and dynamic situations such as single images, frame inside sequences or full video sequences. In the case where a full image sequence is available, a system exploiting motion information to recover depth structure is also designed. Results are promising and competitive with respect to the state of the art literature, but there is still much room for improvement when compared to human depth perception performance.Quan els humans observen una escena, son capaços de distingir perfectament les parts que la composen i organitzar-les espacialment per tal de poder-se orientar. Els mecanismes que governen la percepció visual han estat estudiats des dels principis de la neurociència, però encara no es coneixen tots els processos biològic que hi prenen part. En situacions normals, els humans poden fer servir tres eines per estimar l’estructura de l’escena. La primera és l’anomenada divergència. Aprofita l’ús de dos punts de vista (els dos ulls) i és capaç¸ de determinar molt acuradament la posició dels objectes ,que a una distància de fins a cent metres, romanen enfront de l’observador. A mesura que augmenta la distància o els objectes no es troben en el camp de visió dels dos ulls, altres mecanismes s’han d’utilitzar. Tant l’experiència anterior com certs indicis visuals s’utilitzen en aquests casos i, encara que la seva precisió és menor, els humans aconsegueixen quasi bé sempre interpretar bé el seu entorn. Els indicis visuals que aporten informació de profunditat més coneguts i utilitzats són per exemple, la perspectiva, les oclusions o el tamany de certs objectes. L’experiència anterior permet resoldre situacions vistes anteriorment com ara saber quins regions corresponen al terra, al cel o a objectes. Durant els últims anys, quan la tecnologia ho ha permès, s’han intentat dissenyar sistemes que interpretessin automàticament diferents tipus d’escena. En aquesta tesi s’aborda el tema de l’estimació de la profunditat utilitzant només un punt de vista i indicis visuals d’oclusió. L’objectiu del treball es la detecció d’aquests indicis i combinar-los amb un sistema de segmentació per tal de generar automàticament els diferents plans de profunditat presents a una escena. La tesi explora tant situacions estàtiques (imatges fixes) com situacions dinàmiques, com ara trames dins de seqüències de vídeo o seqüències completes. En el cas de seqüències completes, també es proposa un sistema automàtic per reconstruir l’estructura de l’escena només amb informació de moviment. Els resultats del treball son prometedors i competitius amb la literatura del moment, però mostren encara que la visió per computador té molt marge de millora respecte la precisió dels humans

    Robust online subspace learning

    No full text
    In this thesis, I aim to advance the theories of online non-linear subspace learning through the development of strategies which are both efficient and robust. The use of subspace learning methods is very popular in computer vision and they have been employed to numerous tasks. With the increasing need for real-time applications, the formulation of online (i.e. incremental and real-time) learning methods is a vibrant research field and has received much attention from the research community. A major advantage of incremental systems is that they update the hypothesis during execution, thus allowing for the incorporation of the real data seen in the testing phase. Tracking acts as an attractive and popular evaluation tool for incremental systems, and thus, the connection between online learning and adaptive tracking is seen commonly in the literature. The proposed system in this thesis facilitates learning from noisy input data, e.g. caused by occlusions, casted shadows and pose variations, that are challenging problems in general tracking frameworks. First, a fast and robust alternative to standard L2-norm principal component analysis (PCA) is introduced, which I coin Euler PCA (e-PCA). The formulation of e-PCA is based on robust, non-linear kernel PCA (KPCA) with a cosine-based kernel function that is expressed via an explicit feature space. When applied to tracking, face reconstruction and background modeling, promising results are achieved. In the second part, the problem of matching vectors of 3D rotations is explicitly targeted. A novel distance which is robust for 3D rotations is introduced, and formulated as a kernel function. The kernel leads to a new representation of 3D rotations, the full-angle quaternion (FAQ) representation. Finally, I propose 3D object recognition from point clouds, and object tracking with color values using FAQs. A domain-specific kernel function designed for visual data is then presented. KPCA with Krein space kernels is introduced, as this kernel is indefinite, and an exact incremental learning framework for the new kernel is developed. In a tracker framework, the presented online learning outperforms the competitors in nine popular and challenging video sequences. In the final part, the generalized eigenvalue problem is studied. Specifically, incremental slow feature analysis (SFA) with indefinite kernels is proposed, and applied to temporal video segmentation and tracking with change detection. As online SFA allows for drift detection, further improvements are achieved in the evaluation of the tracking task.Open Acces

    Automatic 3D Facial Performance Acquisition and Animation using Monocular Videos

    Get PDF
    Facial performance capture and animation is an essential component of many applications such as movies, video games, and virtual environments. Video-based facial performance capture is particularly appealing as it offers the lowest cost and the potential use of legacy sources and uncontrolled videos. However, it is also challenging because of complex facial movements at different scales, ambiguity caused by the loss of depth information, and a lack of discernible features on most facial regions. Unknown lighting conditions and camera parameters further complicate the problem. This dissertation explores the video-based 3D facial performance capture systems that use a single video camera, overcome the challenges aforementioned, and produce accurate and robust reconstruction results. We first develop a novel automatic facial feature detection/tracking algorithm that accurately locates important facial features across the entire video sequence, which are then used for 3D pose and facial shape reconstruction. The key idea is to combine the respective powers of local detection, spatial priors for facial feature locations, Active Appearance Models (AAMs), and temporal coherence for facial feature detection. The algorithm runs in realtime and is robust to large pose and expression variations and occlusions. We then present an automatic high-fidelity facial performance capture system that works on monocular videos. It uses the detected facial features along with multilinear facial models to reconstruct 3D head poses and large-scale facial deformation, and uses per-pixel shading cues to add fine-scale surface details such as emerging or disappearing wrinkles and folds. We iterate the reconstruction procedure on large-scale facial geometry and fine-scale facial details to improve the accuracy of facial reconstruction. We further improve the accuracy and efficiency of the large-scale facial performance capture by introducing a local binary feature based 2D feature regression and a convolutional neural network based pose and expression regression, and complement it with an efficient 3D eye gaze tracker to achieve realtime 3D eye gaze animation. We have tested our systems on various monocular videos, demonstrating the accuracy and robustness under a variety of uncontrolled lighting conditions and overcoming significant shape differences across individuals
    corecore