109 research outputs found

    Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on Wearables

    Get PDF
    Deep learning has revolutionized the way sensor data are analyzed and interpreted. The accuracy gains these approaches o↵er make them attractive for the next generation of mobile, wearable and embedded sensory applications. However, state-of-the-art deep learning algorithms typically require a significant amount of device and processor resources, even just for the inference stages that are used to discriminate high-level classes from low-level data. The limited availability of memory, computation, and energy on mobile and embedded platforms thus pose a significant challenge to the adoption of these powerful learning techniques. In this paper, we propose SparseSep, a new approach that leverages the sparsification of fully connected layers and separation of convolutional kernels to reduce the resource requirements of popular deep learning algorithms. As a result, SparseSep allows large-scale DNNs and CNNs to run eciently on mobile and embedded hardware with only minimal impact on inference accuracy. We experiment using SparseSep across a variety of common processors such as the Qualcomm Snapdragon 400, ARM Cortex M0 and M3, and Nvidia Tegra K1, and show that it allows inference for various deep models to execute more eciently; for example, on average requiring 11.3 times less memory and running 13.3 times faster on these representative platforms

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy

    Sparsifying Deep Learning Layers for Constrained Resource Inference on Wearables

    Get PDF
    Deep learning has revolutionized the way sensor data are analyzed and interpreted. The accuracy gains these approaches offer make them attractive for the next generation of mobile, wearable and embedded sensory applications. However, state-of-the-art deep learning algorithms typically require a significant amount of device and processor resources, even just for the inference stages that are used to discriminate high-level classes from low-level data. The limited availability of memory, computation, and energy on mobile and embedded platforms thus pose a significant challenge to the adoption of these powerful learning techniques. In this paper, we propose SparseSep, a new approach that leverages the sparsification of fully connected layers and separation of convolutional kernels to reduce the resource requirements of popular deep learning algorithms. As a result, SparseSep allows large-scale DNNs and CNNs to run efficiently on mobile and embedded hardware with only minimal impact on inference accuracy. We experiment using SparseSep across a variety of common processors such as the Qualcomm Snapdragon 400, ARM Cortex M0 and M3, and Nvidia Tegra K1, and show that it allows inference for various deep models to execute more efficiently; for example, on average requiring 11.3 times less memory and running 13.3 times faster on these representative platforms

    Secure and Usable Behavioural User Authentication for Resource-Constrained Devices

    Full text link
    Robust user authentication on small form-factor and resource-constrained smart devices, such as smartphones, wearables and IoT remains an important problem, especially as such devices are increasingly becoming stores of sensitive personal data, such as daily digital payment traces, health/wellness records and contact e-mails. Hence, a secure, usable and practical authentication mechanism to restrict access to unauthorized users is a basic requirement for such devices. Existing user authentication methods based on passwords pose a mental demand on the user's part and are not secure. Behavioural biometric based authentication provides an attractive means, which can replace passwords and provide high security and usability. To this end, we devise and study novel schemes and modalities and investigate how behaviour based user authentication can be practically realized on resource-constrained devices. In the first part of the thesis, we implemented and evaluated the performance of touch based behavioural biometric on wearables and smartphones. Our results show that touch based behavioural authentication can yield very high accuracy and a small inference time without imposing huge resource requirements on the wearable devices. The second part of the thesis focus on designing a novel hybrid scheme named BehavioCog. The hybrid scheme combined touch gestures (behavioural biometric) with challenge-response based cognitive authentication. Touch based behavioural authentication is highly usable but is prone to observation attacks. While cognitive authentication schemes are highly resistant to observation attacks but not highly usable. The hybrid scheme improves the usability of cognitive authentication and improves the security of touch based behavioural biometric at the same time. Next, we introduce and evaluate a novel behavioural biometric modality named BreathPrint based on an acoustics obtained from individual's breathing gestures. Breathing based authentication is highly usable and secure as it only requires a person to breathe and low observability makes it secure against spoofing and replay attacks. Our investigation with BreathPrint showed that it could be used for efficient real-time authentication on multiple standalone smart devices especially using deep learning models

    A Silent-Speech Interface using Electro-Optical Stomatography

    Get PDF
    Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteressierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausgeschlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können. Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor, das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basierend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworterkennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwendet wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde, ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielversprechende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 191Speech technology is a major and growing industry that enriches the lives of technologically-minded people in a number of ways. Many potential users are, however, excluded: Namely, all speakers who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to communicate with a machine by a convenient speech recognition interface without the need for acoustic speech. They also can potentially provide a full replacement voice by synthesizing the intended utterances that are only silently articulated by the user. To that end, the speech movements need to be captured and mapped to either text or acoustic speech. This dissertation proposes a new Silent-Speech Interface based on a newly developed measurement technology called Electro-Optical Stomatography and a novel parametric vocal tract model to facilitate real-time speech synthesis based on the measured data. The hardware was used to conduct command word recognition studies reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was also completed. While the intelligibility of synthesized vowels was high, the intelligibility of consonants and connected speech was quite poor. Promising ways to improve the system are discussed in the outlook.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 19

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    • …
    corecore